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Abstract—Transfer learning has achieved promising results
by leveraging knowledge from the source domain to annotate
the target domain which has few or none labels. Existing
methods often seek to minimize the distribution divergence
between domains, such as the marginal distribution, the con-
ditional distribution or both. However, these two distances are
often treated equally in existing algorithms, which will result
in poor performance in real applications. Moreover, existing
methods usually assume that the dataset is balanced, which also
limits their performances on imbalanced tasks that are quite
common in real problems. To tackle the distribution adaptation
problem, in this paper, we propose a novel transfer learning
approach, named as Balanced Distribution Adaptation (BDA),
which can adaptively leverage the importance of the marginal
and conditional distribution discrepancies, and several existing
methods can be treated as special cases of BDA. Based on
BDA, we also propose a novel Weighted Balanced Distribution
Adaptation (W-BDA) algorithm to tackle the class imbalance
issue in transfer learning. W-BDA not only considers the
distribution adaptation between domains but also adaptively
changes the weight of each class. To evaluate the proposed
methods, we conduct extensive experiments on several transfer
learning tasks, which demonstrate the effectiveness of our
proposed algorithms over several state-of-the-art methods.

Keywords-Transfer learning, domain adaptation, distribution
adaptation, class imbalance

I. INTRODUCTION

Preparing labeled data is crucial for training machine

learning algorithms. However, it is often expensive and time-

consuming to obtain sufficient labeled data in real applica-

tions. In this case, transfer learning [1] has been a promising

approach by transferring knowledge from a labeled source

domain to the target domain. Transfer learning often assumes

the training and testing data are from similar but different

distributions [1]. For instance, the images of an object

taken in different angles, backgrounds and illuminations

could lead to different marginal or conditional distributions.

By observing this, existing transfer learning methods are

mainly focusing on distribution adaptation to minimize the

distribution divergence between domains [2], [3], [4].

Most of the existing distribution adaptation methods adapt

either marginal distribution [5], conditional distribution [6]

or both [2], [4]. It is shown in [2] that adapting both could

achieve better performance. The work of [2], [4], [7] also

proposed several approaches to adapt the joint distribution.

However, those two distributions are often treated equally

in existing methods, while the importance of each other is

not leveraged. When the datasets are much more dissimilar,

it means the marginal distributions are more dominant;

when the datasets are similar, it means the conditional

distributions needs more attention. Hence, it will deteriorate

the performance of algorithms by only adding them together

with equal weight. Therefore, how to adaptively leverage the

importance of each distribution is a critical problem.

Moreover, class imbalance often exists in many transfer

learning scenarios. When the class proportion of domains

is highly imbalanced, it needs to be considered carefully

for distribution adaptation. Existing methods [2], [4] often

ignore this issue by treating the classes as balanced across

domains, or they only handle the bias on one domain [3],

and this may hinder the effectiveness of transfer learning.

Therefore, how to handle the class imbalance situation in

transfer learning is another important challenge.

In this paper, we propose two novel methods to tackle the

above two issues. For distribution adaptation, we propose

Balanced Distribution Adaptation (BDA). BDA can not

only adapt both the marginal and conditional distributions

between domains, but also leverage the importance of those

two distributions, thus it can be effectively adjusted to

specific transfer learning tasks. Several existing methods

can be regarded as special cases of BDA. Based on BDA,

we also propose a novel Weighted Balanced Distribution

Adaptation (W-BDA) algorithm to tackle the class imbal-

ance issue in transfer learning. The proposed W-BDA can

adaptively change the weight of each class when performing

distribution adaptation. To evaluate BDA and W-BDA, we

conduct extensive experiments on five image datasets.

To sum up, our contributions are mainly three-fold:

1) We propose a novel transfer learning method, which

is named as BDA to balance the marginal and conditional

distribution adaptation. BDA can adaptively adjust the im-

portance of those two distances and can achieve a better

performance. Several transfer learning algorithms can be

regarded as special cases of BDA.
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2) We also propose another novel method W-BDA by

extending BDA to handle the class imbalance problem which

is common in transfer learning. The proposed W-BDA not

only considers the distribution adaptation of domains but

also adaptively changes the weight of each class, thus it can

handle the class imbalance problem for transfer learning.

3) We conduct extensive experiments on five image

datasets to evaluate the BDA and W-BDA methods, indicat-

ing their superiority against other state-of-the-art methods.

II. RELATED WORK

Transfer learning has been widely applied to activity

recognition [8], incremental learning [9], and online learn-

ing [10], [11]. Our proposed BDA and W-BDA are mainly

related to the feature-based transfer learning methods. Thus,

in this section, we present a detailed discussion on this

category, specifically on two aspects.

Joint distribution adaptation. [12] proposed to jointly

select feature and preserve structural properties. Long et
al. [2] proposed joint distribution adaptation method (J-

DA) to match both marginal and conditional distribution

between domains. Others extended JDA by adding struc-

tural consistency [4], domain invariant clustering [7], and

target selection [13]. Those methods tend to ignore the

importance between two distinct distributions by just adding

them together. However, when there is a large discrepancy

between both distributions, those methods cannot evaluate

the importance of each distribution, and may not generalize

well in most cases. Our work is capable of investigating

the importance of each distribution. Thus it can be more

generalized to transfer learning scenarios with complex data

distributions.

Class imbalance problem. Previous sample re-weighting

methods [14] only learned weights of specific samples,

but ignore the class weights balance for different classes.

[15] developed a Closest Common Space Learning (CCSL)

method to adapt the cross-domain weights. CCSL is an

instance selection method, while ours is a feature based

approach. Multiset feature learning was proposed in [16] to

learn discriminant features. [3] proposed weighted maximum

mean discrepancy to construct a source reference collection

on the target domain but it only adapted the prior of source

domain, while our method could adapt the priors from both

source and target domains. [17] tackled the imbalance issue

when target domain has some labels, while in our method,

target domain has no labels. [18] adjusted the weights of

different samples according to their predictions, while our

work focuses on adjusting the weight of each class.

III. BALANCED DISTRIBUTION ADAPTATION

This section elaborates our proposed algorithms. First,

we introduce the problem definition. Then, we present the

Balanced Distribution Adaptation (BDA) approach. Finally,

the Weighted BDA (W-BDA) method is introduced.

A. Problem Definition

Given a labeled source domain {xsi , ysi}ni=1, an unla-

beled target domain {xtj}mj=1, and assume feature space

Xs = Xt, label space Ys = Yt but marginal distributions

Ps(xs) �= Pt(xt) with conditional distributions Ps(ys|xs) �=
Ps(yt|xt). Transfer learning aims to learn the labels yt of

Dt using the source domain Ds.

Balanced distribution adaptation solves the transfer learn-

ing problem by adaptively minimizing the marginal and

conditional distribution discrepancy between domains, and

handle the class imbalance problem, i.e. to minimize the

discrepancies between: 1) P (xs) and P (xt), 2) P (ys|xs)
and P (yt|xt).

B. Balanced Distribution Adaptation

Transfer learning methods often seek to adapt both the

marginal and conditional distributions between domains [2],

[7]. Specifically, this refers to minimizing the distance

D(Ds,Dt) ≈ D(P (xs), P (xt))

+D(P (ys|xs), P (yt|xt))
(1)

However, simply matching both distributions is not e-

nough. Existing methods usually assume they are equally

important, and that implicit assumption does not hold. In this

section, we propose Balanced Distribution Adaptation (B-

DA) to adaptively adjust the importance of both the marginal

and conditional distributions based on each specific tasks.

Concretely speaking, BDA exploits a balance factor μ to

leverage the different importance of distributions:

D(Ds,Dt) ≈ (1− μ)D(P (xs), P (xt))

+ μD(P (ys|xs), P (yt|xt))
(2)

where μ ∈ [0, 1]. When μ → 0, it means the datasets

are more dissimilar, so the marginal distribution is more

dominant; when μ → 1, it reveals the datasets are similar,

so the conditional distribution is more important to adapt.

Therefore, the balance factor μ can adaptively leverage the

importance of each distribution and lead to good results.

It is worth noting that, since the target domain Dt has

no labels, it is not feasible to evaluate the conditional

distribution P (yt|xt). Instead, we use the class conditional

distribution P (xt|yt) to approximate P (yt|xt). Because

P (xt|yt) and P (yt|xt) can be quite involved according to

the sufficient statistics when sample sizes are large [2]. In

order to compute P (xt|yt), we apply prediction on Dt using

some base classifier trained on Ds to get the soft labels for

Dt. The soft labels may be less reliable, so we iteratively

refine the them.

In order to compute the marginal and conditional distri-

bution divergences in Eq. (2), we adopt maximum mean

discrepancy (MMD) [5] to empirically estimate both dis-

tribution discrepancies. As a nonparametric measurement,

MMD has been widely applied to many existing transfer
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learning approaches [5], [2]. Formally speaking, Eq. (2) can

be represented as

D(Ds,Dt) ≈(1− μ)
∥∥∥∥∥∥
1

n

n∑
i=1

xsi −
1

m

m∑
j=1

xtj

∥∥∥∥∥∥
2

H

+ μ
C∑

c=1

∥∥∥∥∥∥∥
1

nc

∑
xsi

∈D(c)
s

xsi −
1

mc

∑
xtj

∈D(c)
t

xtj

∥∥∥∥∥∥∥
2

H
(3)

where H denotes the reproducing kernel Hilbert space

(RKHS), c ∈ {1, 2, · · · , C} is the distinct class label, n,m
denote the number of samples in the source / target domain,

and D(c)
s and D(c)

t denote the samples belonging to class c

in source and target domain, respectively. nc = |D(c)
s |,mc =

|D(c)
t |, denoting the number of samples belonging to D(c)

s

and D(c)
t , respectively. The first term denotes the marginal

distribution distance between domains, while the second

term is the conditional distribution distance.

By further taking advantage of matrix tricks and regular-

ization, Eq. (2) can be formalized as:

min tr

(
A�X

(
(1− μ)M0 + μ

C∑
c=1

Mc

)
X�A

)
+ λ‖A‖2F

s.t. A�XHX�A = I, 0 ≤ μ ≤ 1
(4)

There are two terms in Eq. (4): the adaptation of marginal

and conditional distribution with balance factor (term 1),

and the regularization term (term 2). λ is the regularization

parameter with ‖·‖2F the Frobenius norm. Two constraints

are involved in Eq. (4): the first constraint ensures that

the transformed data (A�X) should preserve the inner

properties of the original data. The second constraint denotes

the range of the balance factor μ.

More specifically, in Eq. (4), X denotes the input data

matrix composed of xs and xt, A denotes the transformation

matrix, I ∈ R
(n+m)×(n+m) is the identity matrix, and H

is the centering matrix i.e. H = I − (1/n)1. Similar as

in work [2], M0 and Mc are MMD matrices and can be

constructed in the following ways:

(M0)ij =

⎧⎪⎨
⎪⎩

1
n2 , xi,xj ∈ Ds

1
m2 , xi,xj ∈ Dt

− 1
mn , otherwise

(5)

(Mc)ij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
n2
c
, xi,xj ∈ D(c)

s

1
m2

c
, xi,xj ∈ D(c)

t

− 1
mcnc

,

{
xi ∈ D(c)

s ,xj ∈ D(c)
t

xi ∈ D(c)
t ,xj ∈ D(c)

s

0, otherwise

(6)

Learning algorithm: Denote Φ = (φ1, φ2, · · · , φd) as

Lagrange multipliers, then Lagrange function for Eq. (4) is

L = tr

(
A�X

(
(1− μ)M0 + μ

C∑
c=1

Mc

)
X�A

)

+ λ‖A‖2F + tr
(
(I−A�XHX�A)Φ

) (7)

Set derivative ∂L/∂A = 0, the optimization can be derived

as a generalized eigendecomposition problem

(
X

(
(1− μ)M0 + μ

C∑
c=1

Mc

)
X� + λI

)
A = XHX�AΦ

(8)

Finally, the optimal transformation matrix A can be obtained

by solving Eq. (8) and finding its d smallest eigenvectors.

Estimation of μ: Note that μ is technically not a free

parameter like λ and it has to be estimated according to data

distributions. However, there is no effective solution for its

estimation. For now, we evaluate the performance of μ by

searching its values in experiments. For real application, we

recommend getting the optimal μ through cross-validation.

C. Weighted Balanced Distribution Adaptation

BDA is able to adaptively leverage the importance of

marginal and conditional distributions between domains.

BDA indicates when the marginal distributions are rela-

tively close, the performance of transfer learning is highly

dependent on the conditional distribution distance. When

computing the conditional distributions, BDA utilizes class

conditional distributions instead, i.e. P (x|y) is used to

approximate P (y|x). This implicitly assumes that the proba-

bility of this class in each domain is similar, which is usually

not the case in real world. In this section, we propose a more

robust approximation of the conditional distribution for class

imbalance problem:

‖P (ys|xs)− P (yt|xt)‖2H
=

∥∥∥∥P (ys)P (xs)
P (xs|ys)− P (yt)

P (xt)
P (xt|yt)

∥∥∥∥
2

H
= ‖αsP (xs|ys)− αtP (xt|yt)‖2H

(9)

Technically, we approximate αs and αt by the class

prior of both domains. To this end, weighted balanced

distribution adaptation (W-BDA) is proposed to balance the

class proportion of each domain. Evaluating the conditional

distribution divergence in Eq. (9) requires to estimate the

marginal distributions P (xs) and P (xt). However, it is non-

trivial. Since BDA is fully capable of adapting P (xs) and

P (xt), we do not estimate them in this step and assume they

are unchanged. Then, we construct a weight matrix Wc for
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each class:

(Wc)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(y(c)
s )

n2
c

, xi,xj ∈ D(c)
s

P
(
y
(c)
t

)
m2

c
, xi,xj ∈ D(c)

t

−
√

P
(
y
(c)
s

)
P
(
y
(c)
t

)
mcnc

,

{
xi ∈ D(c)

s ,xj ∈ D(c)
t

xi ∈ D(c)
t ,xj ∈ D(c)

s

0, otherwise
(10)

where P
(
y
(c)
s

)
and P

(
y
(c)
t

)
denote the class prior on class

c in the source and target domain, respectively.

Embedding Eq. (10) into BDA, we get the trace optimiza-

tion problem of W-BDA:

min tr

(
A�X

(
(1− μ)M0 + μ

C∑
c=1

Wc

)
X�A

)
+ λ‖A‖2F

s.t. A�XHX�A = I, 0 ≤ μ ≤ 1
(11)

Remark: Eq. (5) of BDA and Eq. (10) of W-BDA are

much similar in spirit. Their differences are: 1) Eq. (5) of

BDA only considers the number of samples in each class,

while Eq. (10) also considers the class prior. 2) Eq. (10)

provides more accurate approximation to the conditional

distributions than Eq. (5) when handling the class imbalance.

Kernelization: When applied to nonlinear problems, we

can use a kernel map ψ: x �→ ψ(x), and a kernel matrix

K = ψ(X)�ψ(X). The kernel matrix K ∈ R
(n+m)×(n+m)

can be constructed using linear or RBF kernel.

In summary, Algorithm 1 presents the detail of BDA and

W-BDA methods.

Algorithm 1 BDA: Balanced Distribution Adaptation

Input: Source and target feature matrix Xs and Xt,

source label vector ys, #dimension d, balance factor μ,

regularization parameter λ
Output: Transformation matrix A and classifier f

1: Train a base classifier on Xs and apply prediction on

Xt to get its soft labels ŷt. Construct X = [Xs,Xt],
initialize M0 and Mc by Eq. (5) and (6) (or Wc using

Eq. (10) for W-BDA)

2: repeat
3: Solve the eigendecomposition problem in Eq. (8) (or

Eq. (11) for W-BDA) and use d smallest eigenvectors

to build A
4: Train a classifier f on {A�Xs,ys}
5: Update the soft labels of Dt: ŷt = f(A�Xt)
6: Update matrix Mc using Eq. (6) (or update Wc using

Eq. (10) for W-BDA)

7: until Convergence

8: return Classifier f

IV. EXPERIMENTS

In this section, we evaluate the performance of the pro-

posed methods through extensive experiments.

A. Datasets
We adopt five widely-used datasets: USPS + MNIST,

COIL20 and Office + Caltech. Table I shows the details

of the datasets. USPS (U) and MNIST (M) are standard

digit recognition datasets containing handwritten digits from

0-9. USPS consists of 7,291 training images and 2,007

test images. MNIST contains 60,000 training images and

10,000 test images. COIL20 (CO) includes 1,440 images

belonging to 20 objects. Office is composed of three real-

world object domains: Amazon, Webcam and DSLR. It

has 4,652 images with 31 object categories. Caltech-256
(C) contains 30,607 images and 256 categories. Detailed

descriptions about those datasets can be found in [2]. For all

the datasets, we follow [2] to construct 16 different tasks.

Table I
INTRODUCTION OF THE FIVE DIGIT/OBJECT DATASETS.

Dataset Type #Sample #Feature #Class Domain
USPS Digit 1,800 256 10 U

MNIST Digit 2,000 256 10 M
COIL20 Object 1,440 1,024 20 CO1, CO2
Office Object 1,410 800 10 A, W, D

Caltech Object 1,123 800 10 C

B. Comparison Methods
We choose six state-of-the-art comparison methods:

• 1 Nearest Neighbor classifier (1NN)

• Principal Component Analysis (PCA) + 1NN

• Geodesic Flow Kernel (GFK) [19] + 1NN

• Transfer Component Analysis (TCA) [5] + 1NN

• Joint Distribution Adaptation (JDA) [2] + 1NN

• Transfer Subspace Learning (TSL) [20] + 1NN

Among those methods, 1NN and PCA are traditional

learning methods, while GFK, TCA, JDA, and TSL are state-

of-the-art transfer learning approaches.

C. Implementation Details
PCA, TCA, JDA, TSL, and BDA are acting as dimen-

sionality reduction process, then 1NN is applied. For GFK,

1NN is applied after we get the geodesic flow kernel. For

BDA and W-BDA, μ is searched in {0, 0.1, · · · , 0.9, 1.0}.
Since BDA can achieve a stable performance under a wide

range of parameter values, for the comparison study, we set

d = 100; λ = 0.1 for MNIST + USPS / Office + Caltech

datasets and λ = 0.01 for COIL20 dataset. For the kernel-

based methods, we use linear kernel. The iteration number

for JDA and TCA is set to be T = 10. The codes of BDA

and W-BDA are available online1. Classification accuracy
on target domain is adopted as the evaluation metric which

is widely used in literatures [2], [3].

1Code available at http://tinyurl.com/yd3ol4om
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Table II
ACCURACY (%) OF BDA AND OTHER METHODS ON 16 TASKS.

Task 1NN PCA GFK TCA JDA TSL BDA

U → M 44.70 44.95 46.45 52.20 57.45 53.75 59.35
M → U 65.94 66.22 67.22 54.28 62.89 66.06 69.78

CO1 → CO2 83.61 84.72 72.50 88.61 97.22 88.06 97.22
CO2 → CO1 82.78 84.03 74.17 96.25 86.39 87.92 96.81

C → A 23.70 36.95 41.02 44.89 42.90 44.47 44.89
C → W 25.76 32.54 40.68 36.61 38.64 34.24 38.64
C → D 25.48 38.22 38.85 45.86 47.13 43.31 47.77
A → C 26.00 34.73 40.25 40.78 38.82 37.58 40.78
A → W 29.83 35.59 38.98 37.63 37.29 33.90 39.32
A → D 25.48 27.39 36.31 31.85 40.13 26.11 43.31
W → C 19.86 26.36 30.72 27.16 25.29 29.83 28.94
W → A 22.96 31.00 29.75 30.69 31.84 30.27 32.99
W → D 59.24 77.07 80.89 90.45 90.45 87.26 91.72
D → C 26.27 29.65 30.28 32.50 30.99 28.50 32.50
D → A 28.50 32.05 32.05 31.52 32.25 27.56 33.09
D → W 63.39 75.93 75.59 87.12 91.19 85.42 91.86
Average 40.84 47.34 48.48 51.78 53.18 50.27 55.56
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Figure 1. MMD distance and classification accuracy comparison of TCA,
JDA and BDA on U → M. It can be noted that BDA achieves better
accuracy with relatively small MMD distance.

D. Performance Evaluation of BDA

1) Classification accuracy: We test the performance of

BDA and the other comparison methods on 16 cross-domain

learning tasks. The results are shown in Table II, based on

which, we can draw the following observations.

First, BDA outperforms most of the existing methods (15

out of 16 tasks). Specifically, the average classification

accuracy of BDA is 55.56%, which shows an average

improvement of 2.38% compared to the best comparison

method JDA. JDA is only capable of adapting the marginal

and conditional distribution with the equal weight (μ = 0.5).

Thus JDA can be considered as a special case of BDA.

However, BDA can dramatically improve the accuracy by

adjusting the balance parameter μ to adapt various scenarios.

Second, TCA is also a special case of BDA (μ = 0)

since it only adapts the marginal distribution. Therefore, the

performance of TCA is worse than JDA and BDA.

Third, TSL only adapts the marginal distributions which

highly relies on the distribution density. The performance

of GFK is better on object recognition tasks. The reason is

that GFK learns a global geodesic flow kernel on the low-

dimension representation, which may be enough to transit

smoothly for the object datasets. But as for the digit tasks,

it may not enough to construct smooth transit when the

marginal distribution distance is large.

Last, all transfer learning methods perform better than
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70
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100

A
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)
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Figure 2. Classification accuracy w.r.t. μ on different tasks. Dashed lines
are the best comparison methods.

traditional learning approaches due to the large distribution

gap between different domains. This indicates the effective-

ness of transfer learning methods, among which BDA could

achieve the best performance.

2) Effectiveness of distribution adaptation: We further

verify the effectiveness of BDA by comparing its distribution

adaptation with other two distribution adaptation methods:

TCA and JDA. Specifically, we investigate their performance

with MMD distances calculated using Eq. (4).

Fig. 1(a) and Fig. 1(b) show the MMD distance and

accuracy of TCA, JDA, and BDA with increasing iteration,

respectively. Based on the results, we can observe: a) MMD

distances of all methods can be reduced. This indicates the

effectiveness of TCA, JDA and BDA; b) MMD distance of

TCA is not reduced largely as it only adapts the marginal

distribution distance and requires no iteration; c) MMD

distance of JDA is obviously larger than BDA, since BDA

could balance the importance of marginal and conditional

distribution via μ; d) BDA achieves the best performance.

E. Effectiveness of Balance Factor

In this section, we evaluate the effectiveness of the balance

factor μ. We run BDA with μ ∈ {0, 0.1, · · · , 1.0} on some

tasks and compare the performances with the best baseline

method. Fig. 2 shows the results. It is obvious that the

optimal μ varies on different tasks, indicating the impor-

tance to balance the marginal and conditional distributions

between domains. In comparison, the best baseline JDA

(dash lines) is only the special case of BDA (μ = 0.5),

which means to treat those distributions equally. However,

this assumption does not hold. In task A → W with optimal

μ = 0.8, it means the marginal distributions are almost the

same so the performance of transfer learning mostly depends

on conditional distributions. In task M → U with optimal

μ = 0.1, it means the marginal distributions contribute most

to the discrepancy, so μ is relatively small. In other 13 tasks,

the observations are similar. It indicates in cross-domain

learning problems, μ is extremely important to balance both

the marginal and conditional distributions. Therefore, BDA

is more capable of achieving good performance.

To be noticed, there may be more than one optimal μ for

some tasks (A → D), and the tendency of μ is not always
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stable (CO2 → CO1). The problems behind those facts still

need to be addressed in future research.

F. Effectiveness of Weighted BDA

We extensively verify the effectiveness of proposed W-

BDA. We choose some tasks with highly imbalanced class

distributions and compare the performance of W-BDA with

BDA and JDA. TABLE. III demonstrates the classification

accuracy of 6 tasks. Note that for comparison, classes on

tasks 1 ∼ 4 are rather imbalanced, while classes are rather

balanced on tasks 5 ∼ 6.

Table III
ACCURACY OF JDA, BDA AND W-BDA ON SOME TASKS.

Index Task JDA BDA WBDA
1 C → D 47.13 47.77 48.41
2 W → C 25.29 28.94 31.08
3 U → M 57.45 59.15 59.35
4 A → W 37.29 39.32 40.68
5 C → A 42.90 44.89 45.20
6 CO1 → CO2 97.22 97.22 96.69

From the results, we can observe: 1) JDA achieves the

worst results since it does not consider the gap between

marginal and conditional distributions. BDA is able to

handle the distribution discrepancy and outperforms JDA in

all situations. 2) For the first four tasks which are under

imbalanced class distributions, W-BDA could improve the

performance by adaptively weighting each class. In the other

two tasks where class distributions are rather balanced, W-

BDA still achieves comparable results. On the other 10 tasks,

the results follow the same tendency. To sum up, the results

demonstrate that in transfer learning, W-BDA remains an

effective method to balance the different class distribution

between domains.

In addition, BDA and W-BDA have other two parameters:

feature dimension d and regularization parameter λ. Their

sensitivity evaluations are omitted due to page limit. In our

actual experiments, BDA and W-BDA are relatively robust

to those two parameters.

V. CONCLUSION

Balancing the probability distributions and class distri-

butions between domains are both two important problems

in transfer learning. In this paper, we propose Balanced

Distribution Adaptation (BDA) to adaptively weight the

importance of both marginal and conditional distribution

adaptations. Thus, it could significantly improve the transfer

learning performance. Moreover, we consider handling the

class imbalance problem for transfer learning by proposing

Weighted BDA (W-BDA). Extensive experiments on five

image datasets demonstrate the superiority of our methods

over several state-of-the-art methods. In the future, we will

continue the exploration in these two aspects: by developing

more strategies to leverage the distributions and handle the

class imbalance problem.
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