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ABSTRACT
Visual domain adaptation aims to learn robust classifiers for the
target domain by leveraging knowledge from a source domain. Exist-
ing methods either attempt to align the cross-domain distributions,
or perform manifold subspace learning. However, there are two
significant challenges: (1) degenerated feature transformation, which
means that distribution alignment is often performed in the original
feature space, where feature distortions are hard to overcome. On
the other hand, subspace learning is not sufficient to reduce the dis-
tribution divergence. (2) unevaluated distribution alignment, which
means that existing distribution alignment methods only align
the marginal and conditional distributions with equal importance,
while they fail to evaluate the different importance of these two
distributions in real applications. In this paper, we propose aMani-
fold Embedded Distribution Alignment (MEDA) approach to
address these challenges. MEDA learns a domain-invariant clas-
sifier in Grassmann manifold with structural risk minimization,
while performing dynamic distribution alignment to quantitatively
account for the relative importance of marginal and conditional dis-
tributions. To the best of our knowledge, MEDA is the first attempt
to perform dynamic distribution alignment for manifold domain
adaptation. Extensive experiments demonstrate that MEDA shows
significant improvements in classification accuracy compared to
state-of-the-art traditional and deep methods.
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1 INTRODUCTION
The rapid growth of online media and content sharing applica-
tions has stimulated a great demand for automatic recognition
and analysis for images and other multimedia data [8, 20]. Un-
fortunately, it is often expensive and time-consuming to acquire
sufficient labeled data to train machine learning models. Thus, it is
often necessary to leverage the abundant labeled samples in some
existing domains to facilitate learning in a new target domain. Do-
main adaptation [27, 36] has been a promising approach to solve
such cross-domain learning problems.

Since the distributions of the source and target domains are
different, the key to successful adaptation is to reduce the distri-
bution divergence. To this end, existing work can be summarized
into two main categories: (a) instance reweighting [9, 39], which
reuses samples from the source domain according to some weight-
ing technique; and (b) feature matching, which either performs
subspace learning by exploiting the subspace geometrical struc-
ture [13, 15, 30], or distribution alignment to reduce the marginal or
conditional distribution divergence between domains [23, 40]. Our
focus is on feature matching methods. There are two significant
challenges in existing methods, i.e. degenerated feature transforma-
tion and unevaluated distribution alignment.

Degenerated feature transformation means that both subspace
learning and distribution alignment can only reduce, but not remove
the distribution divergence [1]. Specifically, subspace learning [13,
15, 30] conducts subspace transformation to obtain better feature
representations. However, feature divergence is not eliminated after
subspace transformation [22] since subspace learning only utilizes
the subspace or manifold structure, but fails to perform feature
alignment. On the other hand, distribution alignment [23, 26, 37]
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Figure 1: Examples of two different target domains w.r.t. the
same source domain during distribution adaption.

usually reduces the distribution distance in the original feature
space, where features are often distorted [3] which makes it hard to
reduce the divergence between domains. Therefore, it is critical to
exploit both the advantages of subspace learning and distribution
alignment to further facilitate domain adaptation.

Unevaluated distribution alignment means that existing work [19,
23, 33, 40] only attempted to align the marginal and conditional
distributions with equal weights. But they failed to evaluate the rel-
ative importance of these two distributions. For example, when two
domains are very dissimilar (Figure 1(a)→ 1(b)), the marginal distri-
bution is more important to align. When the marginal distributions
are close (Figure 1(a)→ 1(c)), the conditional distribution should
be given more weight. However, there is no alignment method
which can quantitatively account for the importance of these two
distributions in conjunction.

As far as we know, there has been no previous work that tackle
these two challenges together. In this paper, we propose a novel
Manifold EmbeddedDistributionAlignment (MEDA)method
to address the challenges of both degenerated feature transfor-
mation and unevaluated distribution alignment. MEDA learns a
domain-invariant classifier in Grassmann manifold with structural
risk minimization, while performing dynamic distribution align-
ment by considering the different importance of marginal and
conditional distributions. We also provide a feasible solution to
quantitatively evaluate the importance of distributions. To our best
knowledge, MEDA is the first attempt to reveal the relative impor-
tance of marginal and conditional distributions in transfer learning.

This work makes the following contributions:
1)We propose theMEDA approach for domain adaptation.MEDA

is capable of addressing both the challenges of degenerated feature
transformation and unevaluated distribution alignment.

2) We propose the first quantitative evaluation of the relative
importance of marginal and conditional distributions in domain
adaptation. This is significantly useful in future research on transfer
learning.

3) Extensive experiments on 7 real-world image datasets demon-
strate that compared to several state-of-the-art traditional and deep
methods, MEDA achieves a significant improvement of 3.5% in
average classification accuracy.

2 RELATEDWORK
MEDA substantially distinguishes from existing feature matching
domain adaptation methods in several aspects:

Subspace learning. Subspace Alignment (SA) [13] aligned the base
vectors of both domains, but failed to adapt feature distributions.
Subspace distribution alignment (SDA) [31] extended SA by adding
the subspace variance adaptation. However, SDA did not consider

the local property of subspaces and ignored conditional distribu-
tion alignment. CORAL [30] aligned subspaces in second-order
statistics, but it did not consider the distribution alignment. Scatter
component analysis (SCA) [14] converted the samples into a set of
subspaces (i.e. scatters) and then minimized the divergence between
them. GFK [15] extended the idea of sampled points inmanifold [16]
and proposed to learn the geodesic flow kernel between domains.
The work of [4] used a Hellinger distance to approximate the geo-
desic distance in Riemann space. [3] proposed to use Grassmann for
domain adaptation, but they ignored the conditional distribution
alignment. Different from these approaches, MEDA can learn a
domain-invariant classifier in the manifold and align both marginal
and conditional distributions.

Distribution alignment.MEDA substantially differs from existing
work that only align marginal or conditional distribution [26]. Joint
distribution adaptation (JDA) [23] proposed to match both distribu-
tions with equal weights. Others extended JDA by adding regular-
ization [22], sparse representation [38], structural consistency [19],
domain invariant clustering [33], and label propagation [40]. The
main differences between MEDA and these methods are: 1) These
work treats the two distributions equally. However, when there
is a greater discrepancy between both distributions, they cannot
evaluate their relative importance and thus lead to undermined
performance. Our work is capable of evaluating the quantitative im-
portance of each distribution via considering their different effects.
2) These methods are designed only in the original space, where
feature distortion will hinder the performance. MEDA can align the
distributions in the manifold to overcome the feature distortions.

Domain-invariant classifier learning.The recentwork of ARTL [22],
DIP [2, 3], and DMM [7] also aimed to build a domain-invariant
classifier. However, ARTL and DMM can be undermined by fea-
ture distortion in original space, and they failed to leverage the
different importance of distributions. DIP mainly focused on feature
transformation and only aligned marginal distributions. MEDA is
able to avoid the feature distortion and quantitatively evaluate the
importance of marginal and conditional distribution alignment.

3 MANIFOLD EMBEDDED DISTRIBUTION
ALIGNMENT

3.1 Problem Definition
Given a labeled source domainDs = {xsi ,ysi }

n
i=1 and an unlabeled

target domainDt = {xtj }
n+m
j=n+1, assume the feature spaceXs = Xt ,

label spaceYs = Yt , but marginal probability Ps (xs ) , Pt (xt ) with
conditional probability Qs (ys |xs ) , Qt (yt |xt ). The goal of domain
adaptation is to learn a classifier f : xt 7→ yt to predict the labels
yt ∈ Yt for the target domain Dt using labeled source domain Ds .

According to the structural risk minimization (SRM) [35], f =
argminf ∈HK

ℓ(f (x), y) + R(f ), where the first term indicates the
loss on data samples, the second term denotes the regularization
term, andHK is the Hilbert space induced by kernel functionK(·, ·).
Since there is no labels on Dt , we can only perform SRM on Ds .
Moreover, due to the different distributions between Ds and Dt , it
is necessary to add other constraints to maximize the distribution
consistency while learning f .
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Figure 2: Themain idea ofMEDA. 1○ Features in the original
space are transformed into manifold space by learning the
manifold kernel G. 2○ Dynamic distribution alignment (by
learning µ) with SRM is performed in manifold to learn the
final domain-invariant classifier f .
3.2 Main Idea
MEDA consists of two fundamental steps. Firstly, MEDA performs
manifold feature learning to address the challenge of degenerated
feature transformation. Secondly,MEDAperforms dynamic distribu-
tion alignment to quantitatively account for the relative importance
of marginal and conditional distributions to address the challenge of
unevaluated distribution alignment. Eventually, a domain-invariant
classifier f can be learned by summarizing these two steps with the
principle of SRM. Figure 2 presents the main idea of the proposed
MEDA approach.

Formally, if we denote д(·) the manifold feature learning func-
tional, then f can be represented as

f = argmin
f ∈

∑n
i=1 HK

ℓ(f (д(xi )),yi ) + η | | f | |2K

+ λDf (Ds ,Dt ) + ρRf (Ds ,Dt )

(1)

where | | f | |2K is the squared norm of f . The term Df (·, ·) represents
the proposed dynamic distribution alignment. Additionally, we
introduce Rf (·, ·) as a Laplacian regularization to further exploit
the similar geometrical property of nearest points in manifoldG [5].
η, λ, and ρ are regularization parameters accordingly.

The overall learning process of MEDA is in Algorithm 1. In
next sections, we first introduce manifold feature learning (learn
д(·)). Then, we present the dynamic distribution alignment (learn
Df (·, ·)). Eventually, we articulate the learning of f .

3.3 Manifold Feature Learning
Manifold feature learning serves as the preprocessing step to elimi-
nate the threat of degenerated feature transformation. MEDA learns
д(·) in the Grassmann manifold G(d) [18] since features in the
manifold have some geometrical structures [5, 18] that can avoid
distortion in the original space. And G can facilitate classifier learn-
ing by treating the original d-dimensional subspace (i.e. feature
vector) as its basic element [4]. Additionally, feature transformation
and distribution alignment often have efficient numerical forms
and can thus facilitate domain adaptation on G(d) [18]. There are
several approaches to transform the features into G [4, 16], among
which we embed Geodesic Flow Kernel (GFK) [15] to learn д(·) for
its computational efficiency. We only introduce the main idea of
GFK and the details can be found in its original paper.

When learning manifold features, MEDA tries to model the do-
mains with d-dimensional subspaces and then embed them into

G. Let Ss and St denote the PCA subspaces for the source and
target domain, respectively. G can thus be regarded as a collection
of all d-dimensional subspaces. Each original subspace can be seen
as a point in G. Therefore, the geodesic flow {Φ(t) : 0 ≤ t ≤ 1}
between two points can draw a path for the two subspaces. If we
let Ss = Φ(0) and St = Φ(1), then finding a geodesic flow from
Φ(0) to Φ(1) equals to transforming the original features into an
infinite-dimensional feature space, which eventually eliminates the
domain shift. This kind of approach can be seen as an incremental
way of ‘walking’ from Φ(0) to Φ(1). Specifically, the new features
can be represented as z = д(x) = Φ(t)T x. From [15], the inner
product of transformed features zi and zj gives rise to a positive
semidefinite geodesic flow kernel:

⟨zi , zj ⟩ =
∫ 1

0
(Φ(t)T xi )T (Φ(t)T xj )dt = xTi Gxj (2)

Thus, the feature in original space can be transformed into Grass-
mannmanifold with z = д(x) =

√
Gx.G can be computed efficiently

by singular value decomposition [15]. Note that
√
G is only an ex-

pression form and cannot be computed directly, while its square
root is calculated by Denman-Beavers algorithm [10].

3.4 Dynamic Distribution Alignment
The purpose of dynamic distribution alignment is to quantitatively
evaluate the importance of aligningmarginal (P ) and conditional (Q)
distributions in domain adaptation. Existing methods [23, 40] failed
in this evaluation by only assuming that both distributions are
equally important. However, this assumption may not be realistic
for real applications. For instance, when transferring from Figure
1(a) to 1(b), there is a large difference between datasets. Therefore,
the divergence between Ps and Pt is more dominant. In contrast,
from Figure 1(a) to 1(c), the datasets are similar. Therefore, the
distribution divergence in each class (Qs andQt ) is more dominant.

The adaptive factor:
In view of this phenomenon, we introduce an adaptive factor

to dynamically leverage the importance of these two distributions.
Formally, the dynamic distribution alignment Df is defined as

Df (Ds ,Dt ) = (1 − µ)Df (Ps , Pt ) + µ
C∑
c=1

D
(c)
f (Qs ,Qt ) (3)

where µ ∈ [0, 1] is the adaptive factor and c ∈ {1, · · · ,C} is the class
indicator. Df (Ps , Pt ) denotes the marginal distribution alignment,
and D(c)

f (Qs ,Qt ) denotes the conditional distribution alignment for
class c .

When µ → 0, it means that the distribution distance between the
source and the target domains is large. Thus, marginal distribution
alignment is more important (Figure 1(a) → 1(b)). When µ → 1,
it means that feature distribution between domains is relatively
small, so the distribution of each class is dominant. Thus, the condi-
tional distribution alignment is more important (Figure 1(a)→ 1(c)).
When µ = 0.5, both distributions are treated equally as in existing
methods [23, 40]. Hence, the existing methods can be regarded as
the special cases of MEDA. By learning the optimal adaptive factor
µopt (which we will discuss later), MEDA can be applied to different
domain adaptation problems.



We use the maximum mean discrepancy (MMD) [6] to empiri-
cally calculate the distribution divergence between domains. As
a nonparametric measurement, MMD has been widely applied in
many existing methods [14, 26, 40], and its theoretical effectiveness
has been verified in [17]. The MMD distance between distribu-
tions p and q is defined as d2(p,q) = (Ep [ϕ(zs )] − Eq [ϕ(zt )])2HK
where HK is the reproducing kernel Hilbert space (RKHS) induced
by feature map ϕ(·). Here, E[·] denotes the mean of the embed-
ded samples. In order to compute an MMD associated with f ,
we adopt projected MMD [28] and compute the marginal distri-
bution alignment as Df (Ps , Pt ) = ∥E[f (zs )] − E[f (zt )]∥2HK

. Sim-

ilarly, the conditional distribution alignment is D
(c)
f (Qs ,Qt ) =

∥E[f (z(c)s )]−E[f (z(c)t )]∥2
HK

. Then, dynamic distribution alignment
can be expressed as

Df (Ds ,Dt ) =(1 − µ)∥E[f (zs )) − E[f (zt )]∥2HK

+ µ
C∑
c=1

∥E[f (z(c)s )] − E[f (z(c)t )]∥2
HK

(4)

Note that since Dt has no labels, it is not feasible to evaluate
the conditional distribution Qt = Qt (yt |zt ). Instead, we follow the
idea in [37] and use the class conditional distribution Qt (zt |yt ) to
approximateQt . In order to evaluateQt (zt |yt ), we apply prediction
to Dt using a base classifier trained on Ds to obtain soft labels
for Dt . The soft labels may be less reliable, so we iteratively refine
the prediction. Note that we only use the base classifier in the first
iteration. After that, MEDA can automatically refine the labels for
Dt using results from previous iteration.

The quantitative evaluation of the adaptive factor µ:
We can treat µ as a parameter and tune its value by cross-

validation techniques. However, there is no labels for the target do-
main in unsupervised domain adaptation problems. It is extremely
hard to calculate the value of µ. In this work, we made the first
attempt towards calculating µ (i.e. µ̂) by exploiting the global and
local structure of domains. We adopted theA-distance [6] as the ba-
sic measurement. TheA-distance is defined as the error of building
a linear classifier to discriminate two domains (i.e. a binary classifi-
cation). Formally, we denote ϵ(h) the error of a linear classifier h
discriminating the two domains Ds and Dt . Then, the A-distance
can be defined as

dA(Ds ,Dt ) = 2(1 − 2ϵ(h)) (5)

We can directly compute the marginal A-distance using above
equation, which is denoted as dM . For the A-distance between
conditional distributions, we denote dc as the A-distance for the
cth class. It can be calculated as dc = dA(D

(c)
s ,D

(c)
t ), where D(c)

s

and D
(c)
t denote samples from class c in Ds and Dt , respectively.

Eventually, µ can be estimated as

µ̂ ≈ 1 −
dM

dM +
∑C
c=1 dc

(6)

This estimation has to be conducted at every iteration of the
dynamic distribution adaptation, since the feature distribution may
vary after evaluating the conditional distribution each time. To
be noticed, this is the first solution to quantitatively estimate the
relative importance of each distribution. In fact, this estimation can

be of significant help in future research on transfer learning and
domain adaptation.

3.5 Learning Classifier f
After manifold feature learning and dynamic distribution alignment,
f can be learned by summarizing SRM over Ds and distribution
alignment. Adopting the square loss l2, f can be represented as

f = argmin
f ∈HK

n∑
i=1

(yi − f (zi ))2 + η | | f | |2K

+ λDf (Ds ,Dt ) + ρRf (Ds ,Dt )

(7)

In order to perform efficient learning, we now reformulate each
term in detail.

SRMon the SourceDomain:Using the representer theorem [5],
f admits the expansion

f (z) =
n+m∑
i=1

βiK(zi , z) (8)

where β = (β1, β2, · · · )T ∈ R(n+m)×1 is the coefficients vector and
K is a kernel. Then, SRM on Ds can be

n∑
i=1

(yi − f (zi ))2 + η | | f | |2K

=

n+m∑
i=1

Aii (yi − f (zi ))2 + η | | f | |2K

= | |(Y − βTK)A| |2F + ηtr(β
TKβ)

(9)

where | | · | |F is the Frobenious norm.K ∈ R(n+m)×(n+m) is the kernel
matrix with Ki j = K(zi , zj ), and A ∈ R(n+m)×(n+m) is a diagonal
domain indicator matrix with Aii = 1 if i ∈ Ds , otherwise Aii = 0.
Y = [y1, · · · ,yn+m ] is the label matrix from source and the target
domains. tr(·) denotes the trace operation. Although the labels for
Dt are unavailable, they can be filtered out by the indicator matrix
A.

Dynamic distribution alignment: Using the representer the-
orem and kernel tricks, dynamic distribution alignment in equa-
tion (4) becomes

Df (Ds ,Dt ) = tr
(
βTKMKβ

)
(10)

where M = (1 − µ)M0 + µ
∑C
c=1Mc is the MMD matrix with its

element calculated by

(M0)i j =


1
n2 , zi , zj ∈ Ds
1
m2 , zi , zj ∈ Dt

− 1
mn , otherwise

(11)

(Mc )i j =



1
n2
c
, zi , zj ∈ D

(c)
s

1
m2
c
, zi , zj ∈ D

(c)
t

− 1
mcnc ,

{
zi ∈ D

(c)
s , zj ∈ D

(c)
t

zi ∈ D
(c)
t , zj ∈ D

(c)
s

0, otherwise

(12)

where nc = |D
(c)
s | andmc = |D

(c)
t |.



Algorithm 1Manifold Embedded Distribution Alignment

Input: Data matrix X = [Xs ,Xt ], source domain labels ys , man-
ifold subspace dimension d , regularization parameters λ,η, ρ,
and #neighbor p.

Output: Classifier f .
1: Learn manifold feature transformation kernel G via equa-

tion (2), and get manifold feature Z =
√
GX.

2: Train a base classifier using Ds , then apply prediction on Dt
to get its soft labels ŷt .

3: Construct kernel K using transformed features Zs = Z1:n, : and
Zt = Zn+1:n+m, :.

4: repeat
5: Calculate the adaptive factor µ̂ using equation (6). and com-

pute M0 andMc by equations (11) and (12).
6: Compute β⋆ by solving equation (16) and obtain f via the

representer theorem in equation (8).
7: Update the soft labels of Dt : ŷt = f (Zt ).
8: until Convergence
9: return Classifier f .

Laplacian Regularization: Additionally, we add a Laplacian
regularization term to further exploit the similar geometrical prop-
erty of nearest points in manifold G [5]. We denote the pair-wise
affinity matrix as

Wi j =

{
sim(zi , zj ), zi ∈ Np (zj ) or zj ∈ Np (zi )
0, otherwise

(13)

where sim(·, ·) is a similarity function (such as cosine distance) to
measure the distance between two points. Np (zi ) denotes the set
of p-nearest neighbors to point zi . p is a free parameter and must
be set in the method. By introducing Laplacian matrix L = D −W
with diagonal matrix Dii =

∑n+m
j=1 Wi j , the final regularization can

be expressed by

Rf (Ds ,Dt ) =

n+m∑
i, j=1

Wi j (f (zi ) − f (zj ))2

=

n+m∑
i, j=1

f (zi )Li j f (zj )

= tr
(
βTKLKβ

)
(14)

Overall Reformulation: Substituting with equations (9), (10)
and (14), f in equation (7) can be reformulated as

f = argmin
f ∈HK

| |(Y − βTK)A| |2F + η tr(β
TKβ)

+ tr
(
βTK(λM + ρL)Kβ

) (15)

Setting derivative ∂ f /∂β = 0, we obtain the solution

β⋆ = ((A + λM + ρL)K + ηI)−1AYT (16)

MEDAhas a nice property: it can learn the cross-domain function
directly without the need of explicit classifier training. This makes
it significantly different from most existing work such as JGSA [40]
and CORAL [30] that further needs to learn a certain classifier.

Table 1: Statistics of the seven benchmark datasets.
Dataset #Sample #Feature #Class Domain
Office-10 1,410 800 (4,096) 10 A, W, D
Caltech-10 1,123 800 (4,096) 10 C
Office-31 4,652 4,096 31 A, W, D
USPS 1,800 256 10 USPS (U)
MNIST 2,000 256 10 MNIST (M)

ImageNet 7,341 4,096 5 ImageNet (I)
VOC2007 3,376 4,096 5 VOC (V)

4 EXPERIMENTS AND EVALUATIONS
In this section, we evaluate the performance of MEDA through
extensive experiments on large-scale public datasets. The source
code for MEDA is available at http://transferlearning.xyz/.

4.1 Data Preparation
We adopted seven publicly image datasets: Office+Caltech10, USPS
+ MNIST, ImageNet + VOC2007, and Office-31. These datasets are
popular for benchmarking domain adaptation algorithms and have
been widely adopted in most existing work such as [15, 22, 40, 41].
Table 1 lists the statistics of the seven datasets.

Office-31 [29] consists of three real-world object domains:Ama-
zon (A),Webcam (W) and DSLR (D). It has 4,652 images with 31
categories. Caltech-256 (C) contains 30,607 images and 256 cate-
gories. Since the objects in Office and Caltech follow different distri-
butions, domain adaptation can help to perform cross-domain recog-
nition. There are 10 common classes in the two datasets. For our
experiments, we adopted the Office+Caltech10 datasets from [15]
which contains 12 tasks: A→ D, A→ C,..., C→W. In the rest of
the paper, we use A → B to denote the knowledge transfer from
source domain A to the target domain B.

USPS (U) andMNIST (M) are standard digit recognition datasets
containing handwritten digits from 0-9. Since the same digits across
two datasets follow different distributions, it is necessary to perform
domain adaptation. USPS consists of 7,291 training images and 2,007
test images of size 16× 16. MNIST consists of 60,000 training images
and 10,000 test images of size 28 × 28. We construct two tasks: U
→M and M → U.

ImageNet (I) and VOC2007 (V) are large standard image recog-
nition datasets. Each dataset can be treated as one domain. The
images from the same classes of two domains follow different dis-
tributions. In our experiments, we adopt the sub-datasets presented
in [12] to construct cross-domain tasks. Five common classes are
extracted from both datasets: bird, cat, chair, dog, and person. Even-
tually, we have two tasks: I→ V and V→ I.

4.2 State-of-the-art Comparison Methods
We compared the performance of MEDA with several state-of-the-
art traditional and deep domain adaptation approaches.

Traditional learning methods:
• 1NN, SVM, and PCA
• Transfer Component Analysis (TCA) [26], which performs
marginal distribution alignment

• Geodesic Flow Kernel (GFK) [15], which performs manifold
feature learning

• Joint distribution alignment (JDA) [23], which adapts both
marginal and conditional distribution

http://transferlearning.xyz/


Table 2: Accuracy (%) on Office+Caltech10 datasets using SURF features.
Task 1NN SVM PCA TCA GFK JDA TJM CORAL SCA ARTL JGSA MEDA
C → A 23.7 53.1 39.5 45.6 46.0 43.1 46.8 52.1 45.6 44.1 51.5 56.5
C →W 25.8 41.7 34.6 39.3 37.0 39.3 39.0 46.4 40.0 31.5 45.4 53.9
C → D 25.5 47.8 44.6 45.9 40.8 49.0 44.6 45.9 47.1 39.5 45.9 50.3
A→ C 26.0 41.7 39.0 42.0 40.7 40.9 39.5 45.1 39.7 36.1 41.5 43.9
A →W 29.8 31.9 35.9 40.0 37.0 38.0 42.0 44.4 34.9 33.6 45.8 53.2
A→ D 25.5 44.6 33.8 35.7 40.1 42.0 45.2 39.5 39.5 36.9 47.1 45.9
W → C 19.9 28.8 28.2 31.5 24.8 33.0 30.2 33.7 31.1 29.7 33.2 34.0
W → A 23.0 27.6 29.1 30.5 27.6 29.8 30.0 36.0 30.0 38.3 39.9 42.7
W → D 59.2 78.3 89.2 91.1 85.4 92.4 89.2 86.6 87.3 87.9 90.5 88.5
D→ C 26.3 26.4 29.7 33.0 29.3 31.2 31.4 33.8 30.7 30.5 29.9 34.9
D→ A 28.5 26.2 33.2 32.8 28.7 33.4 32.8 37.7 31.6 34.9 38.0 41.2
D→ W 63.4 52.5 86.1 87.5 80.3 89.2 85.4 84.7 84.4 88.5 91.9 87.5
Average 31.4 41.1 43.6 46.2 43.1 46.8 46.3 48.8 45.2 44.3 50.0 52.7

Table 3: Accuracy (%) on USPS+MNIST and ImageNet+VOC2007 datasets.
Task 1NN SVM PCA TCA GFK JDA TJM CORAL SCA ARTL JGSA MEDA

U →M 44.7 62.2 45.0 51.2 46.5 59.7 52.3 30.5 48.0 67.7 68.2 72.1
M → U 65.9 68.2 66.2 56.3 61.2 67.3 63.3 49.2 65.1 88.8 80.4 89.5
I → V 50.8 52.4 58.4 63.7 59.5 63.4 63.7 59.6 - 62.4 52.3 67.3
V → I 38.2 42.7 65.1 64.9 73.8 70.2 73.0 70.3 - 72.2 70.6 74.7
Average 49.9 56.3 58.7 59.0 60.2 65.1 63.1 52.4 - 72.8 67.9 75.9

Table 4: Accuracy (%) on Office+Caltech10 datasets using DeCaf6 features.

Task Traditional Methods Deep Methods MEDA1NN SVM PCA TCA GFK JDA TJM SCA ARTL JGSA CORAL DMM AlexNet DDC DAN DCORAL DUCDA
C → A 87.3 91.6 88.1 89.8 88.2 89.6 88.8 89.5 92.4 91.4 92.0 92.4 91.9 91.9 92.0 92.4 92.8 93.4
C →W 72.5 80.7 83.4 78.3 77.6 85.1 81.4 85.4 87.8 86.8 80.0 87.5 83.7 85.4 90.6 91.1 91.6 95.6
C → D 79.6 86.0 84.1 85.4 86.6 89.8 84.7 87.9 86.6 93.6 84.7 90.4 87.1 88.8 89.3 91.4 91.7 91.1
A→ C 71.7 82.2 79.3 82.6 79.2 83.6 84.3 78.8 87.4 84.9 83.2 84.8 83.0 85.0 84.1 84.7 84.8 87.4
A→W 68.1 71.9 70.9 74.2 70.9 78.3 71.9 75.9 88.5 81.0 74.6 84.7 79.5 86.1 91.8 - - 88.1
A→ D 74.5 80.9 82.2 81.5 82.2 80.3 76.4 85.4 85.4 88.5 84.1 92.4 87.4 89.0 91.7 - - 88.1
W → C 55.3 67.9 70.3 80.4 69.8 84.8 83.0 74.8 88.2 85.0 75.5 81.7 73.0 78.0 81.2 79.3 80.2 93.2
W→ A 62.6 73.4 73.5 84.1 76.8 90.3 87.6 86.1 92.3 90.7 81.2 86.5 83.8 84.9 92.1 - - 99.4
W→ D 98.1 100.0 99.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.7 100.0 100.0 100.0 - - 99.4
D→ C 42.1 72.8 71.7 82.3 71.4 85.5 83.8 78.1 87.3 86.2 76.8 83.3 79.0 81.1 80.3 82.8 82.5 87.5
D→ A 50.0 78.7 79.2 89.1 76.3 91.7 90.3 90.0 92.7 92.0 85.5 90.7 87.1 89.5 90.0 - - 93.2
D→W 91.5 98.3 98.0 99.7 99.3 99.7 99.3 98.6 100.0 99.7 99.3 99.3 97.7 98.2 98.5 - - 97.6
Average 71.1 82.0 81.7 85.6 81.5 88.2 86.0 85.9 90.7 90.0 84.7 89.4 86.1 88.2 90.1 - - 92.8

• Transfer Joint Matching (TJM) [24], which adapts marginal
distribution with source sample selection

• Adaptation Regularization (ARTL) [22], which learns do-
main classifier in original space

• CORrelationAlignment (CORAL) [30], which performs second-
order subspace alignment

• Scatter Component Analysis (SCA) [14], which adapts scat-
ters in subspace

• Joint Geometrical and Statistical Alignment (JGSA) [40],
which aligns marginal & conditional distributions with label
propagation

• Distribution Matching Machine (DMM) [7], which learns a
transfer SVM to align distributions

And deep domain adaptation methods:
• AlexNet [21], which is a standard convnet
• Deep Domain Confusion (DDC) [34], which is a single-layer
deep adaptation method with MMD loss

• DeepAdaptationNetwork (DAN) [25], which is amulti-layer
adaptation method with multiple kernel MMD

• Deep CORAL (DCORAL) [32], which is a deep neural net-
work with CORAL loss

• DeepUnsupervised Convolutional DomainAdaptation (DUCDA)
[41], which is based on attention and CORAL loss

4.3 Experimental Setup
For fair comparison, we follow the same protocols as [37, 40, 41] to
adopt the extracted features for MEDA and other traditional meth-
ods. To be specific, 256 SURF features are used for USPS+MNIST
datasets; for Office+Caltech10 datasets, both 800 SURF and 4,096
DeCaf6 [11] features are used; for Office-31 dataset, 4,096 DeCaf6
features are used; for ImageNet+VOC datasets, 4,096 DeCaf6 fea-
tures are used. Deep methods can be used to the original images.

Parameter setting: The optimal parameters of all comparison
methods are set according to their original papers. As for MEDA, we
set themanifold feature dimensiond = 20, 30, 40 for Office+Caltech10,
USPS+MNIST, and ImageNet+VOC datasets, respectively. The it-
eration number are set to T = 10. We use the RBF kernel with
the bandwidth set to be the variance of inputs. The regularization
parameters are set as p = 10, λ = 10,η = 0.1, and ρ = 1. The
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Figure 3: Accuracy in original (left) and manifold space
(right) with different µ. Dashed lines are best baseline.
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approach of setting these parameters are in the supplementary file.
Additionally, the experiments on parameter sensitivity and conver-
gence analysis in later experiments (Section 4.6 and 4.7) indicate
that MEDA stays robust with a wide range of parameter choices.

We adopt classification Accuracy onDt as the evaluation metric,
which is widely used in existing literatures [15, 26, 37]:Accuracy =
|x:x∈Dt∧ŷ(x)=y(x) |

|x:x∈Dt |
, where y(x) and ŷ(x) are the truth and predicted

labels for target domain, respectively.

4.4 Experimental Results and Analysis
The classification accuracy results on the aforementioned datasets
are shown in Tables 2, 3, and 4, respectively1. From those results,
we can make several observations as follows.

Firstly, MEDA outperformed all other traditional and deep com-
parison methods in most tasks (21/28 tasks). The average classi-
fication accuracy of MEDA on 28 tasks was 73.2%. Compared to
the best baseline method JGSA (69.7%), the average performance
improvement was 3.5%, which showed a significant average error
reduction of 11.6%. Note that the results on Office-31 dataset were
in the supplementary file 2 due to space constraints, and the ob-
servations are the same. Since these results were obtained from a
wide range of image datasets, it demonstrates that MEDA is capa-
ble of significantly reducing the distribution divergence in domain
adaptation problems.

Secondly, the performances of distribution alignment methods
(TCA, JDA, ARTL, TJM, JGSA, and DMM) and subspace learning
methods (GFK, CORAL, and SCA)were generally worse thanMEDA.
Each kind of methods has its limitations and cannot handle domain
adaptation in specific tasks. This indicates the disadvantages of
those methods to cope with degenerated feature transformation

1Symbol ‘-’ denotes the result is not available since there is no code or results.
2Supplementary file is at https://www.jianguoyun.com/p/DRuWOFkQjKnsBRjkr2E.

Table 5: Mean and standard deviation of accuracy in feature
learning in both original and manifold space.

Task Original Space Manifold Space Improvement
C → A 44.9 (2.1) 56.5 (0.5) 25.8% (-76.9%)
C→ W 33.5 (4.5) 54.0 (0.4) 61.4% (-90.9%)

C → A (DeCaf) 92.5 (0.2) 93.4 (0.1) 1.0% (-58.3%)
C→ W (DeCaf) 88.4 (1.7) 95.5 (0.3) 8.1% (-82.6%)

U →M 64.1 (9.2) 71.2 (4.2) 11.1% (-54.5%)
I→ V 63.0 (2.5) 63.7 (2.2) 1.1% (-13.2%)

Table 6: Performance comparison between µopt and µ̂.
Task C → A W → D C → A (DeCaf) W → C (DeCaf) M→ U I → V
µopt 57.0 89.2 93.4 88.0 89.4 67.6
µ̂ 56.5 88.5 93.4 93.2 89.5 67.3

Performance
Variation -0.9% -0.8% 0 +5.9% +0.1% -0.4%

and unevaluated distribution alignment. After manifold or subsapce
learning, there still exists large domain shift [3]; while feature
distortion will undermine the distribution alignment methods.

Thirdly, MEDA also outperformed the deep methods (AlexNet,
DDC, DAN, DCORAL, and DUCDA) on Office+Caltech10 datasets.
Deep methods often have to tune a lot of hyperparameters be-
fore obtaining the optimal results. Compared to them, MEDA only
involves several parameters that can easily be set by human experi-
ence or cross-validation. This implies the accuracy and efficiency
of MEDA in domain adaptation problems over other deep methods.

4.5 Effectiveness Analysis
4.5.1 Manifold Feature Learning. We investigate the effective-

ness of manifold feature learning in handling the degenerated fea-
ture transformation challenge. To this end, we ran MEDA with
and without manifold feature learning on randomly selected tasks.
Table 5 showed the mean, standard deviation, and performance im-
provement of classification accuracy with µ ∈ {0, 0.1, · · · , 1}. For
instance, the improvement of mean accuracy on task C→ A was:
(56.5 − 44.9)/44.9 × 100% = 25.8%. From these results, we can ob-
serve that: 1) The performance of all the tasks were improved with
manifold feature learning, indicating that transforming features
into the manifold alleviates domain shift to some extent and facili-
tates distribution alignment; 2) The standard deviation of methods
that adopted manifold learning with different µ could be dramati-
cally reduced. 3) MEDA can also reach a comparable performance
without manifold learning, while adding manifold learning would
produce better results. This reveals the effectiveness of manifold
feature learning to alleviate degenerated feature transformation.

4.5.2 Dynamic Distribution Alignment. We verify the effective-
ness of dynamic distribution alignment in handling the unevalu-
ated distribution alignment challenge. We ran MEDA by searching
µ ∈ {0, 0.1, · · · , 0.9, 1.0} and compared the performances with the
best baseline method (JGSA). From the results in Figure 3, we can
clearly observe that the classification accuracy varied with different
choice of µ. This indicates the necessity to consider the different
effects between marginal and conditional distributions. We can
also observe that the optimal µ value varied on different tasks
(µ = 0.2, 0, 1 for three tasks, respectively). Thus, it is necessary to
dynamically adjust the distribution alignment between domains
according to different tasks. Moreover, the optimal value of µ is not
unique on certain task. The classification results may be the same
even for different µ.

https://www.jianguoyun.com/p/DRuWOFkQjKnsBRjkr2E
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Figure 5: (a)∼(c): classification accuracy w.r.t. d , p, and λ, respectively. (d) convergence analysis.

The estimation of µ: We evaluate our solution of estimating
µ (equation (6)). Since the optimal µ is not unique, we can not
directly compare the value of µopt and µ̂ to evaluate our solution.
Instead, we compare the performances (accuracy values) achieved
by µopt and µ̂. The results in Table 6 indicated that the performance
of estimated µ̂ was very close to µopt , and sometimes it is better
than grid search (M → U). For instance, the performance variation
of C→ A was (57.0− 56.5)/57.0× 100% = 0.9%. This demonstrates
that the effectiveness in estimating µ. This estimation solution can
be directly applied to future research.

4.5.3 Evaluation of Each Component. When learning the final
classifier f , MEDA involves three components: the structural risk
minimization (SRM), the dynamic distribution alignment (DA), and
Laplacian regularization (Lap). We empirically evaluated the im-
portance of each component. We randomly selected several tasks
and reported the results in Figure 4. Note that we did not run this
experiment on the Decaf features of Office+Caltech10 dataset since
its results are already satisfied.

Those results clearly indicated that each component is impor-
tant in MEDA, and they are indispensable. Moreover, we observe
that in all tasks, it is more important to align the distributions. The
reason is that there exists large distribution divergence between
two domains. The results also suggests that adding Laplacian reg-
ularization is more beneficial in capturing the manifold structure.
Additionally, combining the effectiveness of manifold feature learn-
ing (Section 4.5.1), it is clear that all components are important for
improving the accuracy in domain adaptation tasks.

4.6 Parameter Sensitivity
As with other state-of-the-art domain adaptation algorithms [14,
22, 40], MEDA also involves several parameters. In this section, we
evaluate the parameter sensitivity.

4.6.1 Subspace Dimension and #neighbor. We investigated the
sensitivity of manifold subspace dimension d and #neighbor p
through experiments with a wide range of d ∈ {10, 20, · · · , 100}
and p ∈ {2, 4, · · · , 64} on randomly selected tasks. From the results
in Figure 5(a) and 5(b), it can be observed that MEDA was robust
with regard to different values of d and p. Therefore, they can be
selected without knowledge in real applications.

4.6.2 Regularization Parameters. We ran MEDA with a wide
range of values for regularization parameters λ,η, and ρ on several
random tasks and compare its performance with the best baseline
method. For the lack of space, we only report the results of λ in

Table 7: Running time (s) of ARTL, JGSA, and MEDA.
Task #Sample × #Feature ARTL JGSA MEDA
C → A 2,081 × 800 29.2 95.2 32.3
M→ U 3,800 × 256 29.1 14.6 31.4
I→ V 10,717 × 4,096 2,648.8 > 10,000 2,931.7

Figure 5(c), and the results of ρ andη can be found in the supplemen-
tary file. We observed that MEDA can achieve a robust performance
with regard to a wide range of parameter values. Specifically, the
best choices of these parameters are: λ ∈ [0.5, 1, 000],η ∈ [0.01, 1],
and ρ ∈ [0.01, 5]. To sum up, the performance of MEDA stays robust
with a wide range of regularization parameter choice.

4.7 Convergence and Time Complexity
We validated the convergence of MEDA through empirical analysis.
From the results in Figure 5(d), it can be observed that MEDA can
reach a steady performance in only a few (T < 10) iterations. It
indicates the training advantage of MEDA in cross-domain tasks.

We also empirically checked the time complexity of MEDA and
compared it with other top two baselines ARTL and JGSA on dif-
ferent tasks. The environment was an Intel Core i7-4790 CPU with
24 GB memory. Note that the time complexity of deep methods are
not comparable with MEDA since they require a lot of backprop-
agations. The results in Table 7 reveal that except its superiority
in classification accuracy, MEDA also achieved a running time
complexity comparable to top two best baseline methods.

5 CONCLUSIONS
In this paper, we propose a novel Manifold Embedded Distribution
Alignment (MEDA) approach for visual domain adaptation. Com-
pared to existing work, MEDA is the first attempt to handle the
challenges of both degenerated feature transformation and unevalu-
ated distribution alignment. MEDA can learn the domain-invariant
classifier with the principle of structural risk minimization while
performing dynamic distribution alignment. We also provide a fea-
sible solution to quantitatively calculate the adaptive factor. We
conducted extensive experiments on several large-scale publicly
available image classification datasets. The results demonstrate the
superiority of MEDA against other state-of-the-art traditional and
deep domain adaptation methods.

ACKNOWLEDGMENTS
This work is supported by National Key R & D Program of China
(2016YFB1001200), NSFC (61572471,61702520,61672313), NSF through
grants IIS-1526499, IIS-1763325, CNS-1626432, and Nanyang Assis-
tant Professorship (NAP) of Nanyang Technological University.



REFERENCES
[1] Rahaf Aljundi, Rémi Emonet, Damien Muselet, and Marc Sebban. 2015.

Landmarks-based kernelized subspace alignment for unsupervised domain adap-
tation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 56–63.

[2] Mahsa Baktashmotlagh, Mehrtash Harandi, and Mathieu Salzmann. 2016.
Distribution-matching embedding for visual domain adaptation. The Journal of
Machine Learning Research 17, 1 (2016), 3760–3789.

[3] Mahsa Baktashmotlagh, Mehrtash T Harandi, Brian C Lovell, and Mathieu Salz-
mann. 2013. Unsupervised domain adaptation by domain invariant projection.
In Proceedings of the IEEE International Conference on Computer Vision. 769–776.

[4] Mahsa Baktashmotlagh, Mehrtash T Harandi, Brian C Lovell, and Mathieu Salz-
mann. 2014. Domain adaptation on the statistical manifold. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2481–2488.

[5] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. 2006. Manifold regulariza-
tion: A geometric framework for learning from labeled and unlabeled examples.
Journal of machine learning research 7, Nov (2006), 2399–2434.

[6] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. 2007. Anal-
ysis of representations for domain adaptation. In Advances in neural information
processing systems. 137–144.

[7] Yue Cao, Mingsheng Long, and Jianmin Wang. 2018. Unsupervised Domain
Adaptation with Distribution Matching Machines. In Proceedings of the 2018
AAAI International Conference on Artificial Intelligence.

[8] Long Chen, Hanwang Zhang, Jun Xiao, Wei Liu, and Shih-Fu Chang. 2018. Zero-
Shot Visual Recognition using Semantics-Preserving Adversarial Embedding
Network. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9] Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu. 2007. Boosting for
transfer learning. In Proceedings of the 24th international conference on Machine
learning (ICML). ACM, 193–200.

[10] Eugene D Denman and Alex N Beavers Jr. 1976. The matrix sign function and
computations in systems. Applied mathematics and Computation 2, 1 (1976),
63–94.

[11] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric
Tzeng, and Trevor Darrell. 2014. Decaf: A deep convolutional activation feature
for generic visual recognition. In International conference on machine learning.
647–655.

[12] Chen Fang, Ye Xu, and Daniel N Rockmore. 2013. Unbiased metric learning:
On the utilization of multiple datasets and web images for softening bias. In
Proceedings of the IEEE International Conference on Computer Vision. 1657–1664.

[13] Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars. 2013.
Unsupervised visual domain adaptation using subspace alignment. In Proceedings
of the IEEE international conference on computer vision. 2960–2967.

[14] Muhammad Ghifary, David Balduzzi, W Bastiaan Kleijn, and Mengjie Zhang.
2017. Scatter component analysis: A unified framework for domain adaptation
and domain generalization. IEEE transactions on pattern analysis and machine
intelligence 39, 7 (2017), 1414–1430.

[15] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. 2012. Geodesic flow kernel
for unsupervised domain adaptation. In Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on. IEEE, 2066–2073.

[16] Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. 2011. Domain adaptation
for object recognition: An unsupervised approach. In Computer Vision (ICCV),
2011 IEEE International Conference on. IEEE, 999–1006.

[17] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and
Alexander Smola. 2012. A kernel two-sample test. Journal of Machine Learning
Research 13, Mar (2012), 723–773.

[18] Jihun Hamm and Daniel D Lee. 2008. Grassmann discriminant analysis: a uni-
fying view on subspace-based learning. In Proceedings of the 25th international
conference on Machine learning. ACM, 376–383.

[19] Cheng-An Hou, Yao-Hung Hubert Tsai, Yi-Ren Yeh, and Yu-Chiang Frank Wang.
2016. Unsupervised Domain Adaptation With Label and Structural Consistency.

IEEE Transactions on Image Processing 25, 12 (2016), 5552–5562.
[20] Bogdan Ionescu, Mihai Lupu, Maia Rohm, Alexandru Lucian Gînsca, and Henning

Müller. 2018. Datasets column: diversity and credibility for social images and
image retrieval. ACM SIGMultimedia Records 9, 3 (2018), 7.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[22] Mingsheng Long, JianminWang, Guiguang Ding, Sinno Jialin Pan, and S Yu Philip.
2014. Adaptation regularization: A general framework for transfer learning. IEEE
Transactions on Knowledge and Data Engineering 26, 5 (2014), 1076–1089.

[23] Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and Philip S Yu.
2013. Transfer feature learning with joint distribution adaptation. In Proceedings
of the IEEE International Conference on Computer Vision. 2200–2207.

[24] Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and Philip S Yu.
2014. Transfer joint matching for unsupervised domain adaptation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 1410–1417.

[25] Mingsheng Long, Jianmin Wang, Jiaguang Sun, and S Yu Philip. 2015. Domain
invariant transfer kernel learning. IEEE Transactions on Knowledge and Data
Engineering 27, 6 (2015), 1519–1532.

[26] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. 2011. Domain
adaptation via transfer component analysis. IEEE Transactions on Neural Networks
22, 2 (2011), 199–210.

[27] Sinno Jialin Pan and Qiang Yang. 2010. A survey on transfer learning. Knowledge
and Data Engineering, IEEE Transactions on 22, 10 (2010), 1345–1359.

[28] Brian Quanz and Jun Huan. 2009. Large margin transductive transfer learning. In
Proceedings of the 18th ACM conference on Information and knowledgemanagement.
ACM, 1327–1336.

[29] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. 2010. Adapting visual
category models to new domains. In European conference on computer vision.
Springer, 213–226.

[30] Baochen Sun, Jiashi Feng, and Kate Saenko. 2016. Return of Frustratingly Easy
Domain Adaptation.. In AAAI, Vol. 6. 8.

[31] Baochen Sun and Kate Saenko. 2015. Subspace Distribution Alignment for
Unsupervised Domain Adaptation.. In BMVC. 24–1.

[32] Baochen Sun and Kate Saenko. 2016. Deep coral: Correlation alignment for
deep domain adaptation. In European Conference on Computer Vision. Springer,
443–450.

[33] Jafar Tahmoresnezhad and Sattar Hashemi. 2016. Visual domain adaptation via
transfer feature learning. Knowledge and Information Systems (2016), 1–21.

[34] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. 2014.
Deep domain confusion: Maximizing for domain invariance. arXiv preprint
arXiv:1412.3474 (2014).

[35] Vladimir Naumovich Vapnik and Vlamimir Vapnik. 1998. Statistical learning
theory. Vol. 1. Wiley New York.

[36] Jindong Wang et al. 2018. Everything about Transfer Learning and Domain
Adapation. http://transferlearning.xyz. (2018).

[37] Jindong Wang, Yiqiang Chen, Shuji Hao, Wenjie Feng, and Zhiqi Shen. 2017.
Balanced distribution adaptation for transfer learning. In Data Mining (ICDM),
2017 IEEE International Conference on. IEEE, 1129–1134.

[38] Yong Xu, Xiaozhao Fang, Jian Wu, Xuelong Li, and David Zhang. 2016. Discrimi-
native transfer subspace learning via low-rank and sparse representation. IEEE
Transactions on Image Processing 25, 2 (2016), 850–863.

[39] Yonghui Xu, Sinno Jialin Pan, Hui Xiong, Qingyao Wu, Ronghua Luo, Huaqing
Min, and Hengjie Song. 2017. A Unified Framework for Metric Transfer Learning.
IEEE Transactions on Knowledge and Data Engineering (2017).

[40] Jing Zhang, Wanqing Li, and Philip Ogunbona. 2017. Joint Geometrical and
Statistical Alignment for Visual Domain Adaptation. In CVPR.

[41] Junbao Zhuo, Shuhui Wang, Weigang Zhang, and Qingming Huang. 2017. Deep
Unsupervised Convolutional Domain Adaptation. In Proceedings of the 2017 ACM
on Multimedia Conference. ACM, 261–269.

http://transferlearning.xyz

	Abstract
	1 Introduction
	2 Related Work
	3 Manifold Embedded distribution alignment
	3.1 Problem Definition
	3.2 Main Idea
	3.3 Manifold Feature Learning
	3.4 Dynamic Distribution Alignment
	3.5 Learning Classifier f

	4 Experiments and Evaluations
	4.1 Data Preparation
	4.2 State-of-the-art Comparison Methods
	4.3 Experimental Setup
	4.4 Experimental Results and Analysis
	4.5 Effectiveness Analysis
	4.6 Parameter Sensitivity
	4.7 Convergence and Time Complexity

	5 Conclusions
	Acknowledgments
	References

