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a b s t r a c t

In image classification, it is often expensive and time-consuming to acquire sufficient labels. To solve
this problem, domain adaptation often provides an attractive option given a large amount of labeled
data from a similar nature but different domains. Existing approaches mainly align the distributions
of representations extracted by a single structure and the representations may only contain partial
information, e.g., only contain part of the saturation, brightness, and hue information. Along this
line, we propose Multi-Representation Adaptation which can dramatically improve the classification
accuracy for cross-domain image classification and specially aims to align the distributions of multiple
representations extracted by a hybrid structure named Inception Adaptation Module (IAM). Based
on this, we present Multi-Representation Adaptation Network (MRAN) to accomplish the cross-
domain image classification task via multi-representation alignment which can capture the information
from different aspects. In addition, we extend Maximum Mean Discrepancy (MMD) to compute the
adaptation loss. Our approach can be easily implemented by extending most feed-forward models with
IAM, and the network can be trained efficiently via back-propagation. Experiments conducted on three
benchmark image datasets demonstrate the effectiveness of MRAN.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

As one of the fundamental technologies in computer vision,
image classification has widely been researched. There are many
applications of image classification, such as face recognition
(Parkhi, Vedaldi, Zisserman, et al., 2015), handwritten recogni-
tion (LeCun et al., 1990), and human activity recognition (Bulling,
Blanke, & Schiele, 2014). To successfully construct an image
classification system, a sufficient number of manually annotated
images for each specific target domain are required beforehand.
With a large amount of labeled training data and substantial com-
putation resources, the satisfying performances can be achieved
by deep neural networks recently (He, Zhang, Ren, & Sun, 2016;
Simonyan & Zisserman, 2015).

Nevertheless, in real situations, it is usually impractical to
obtain sufficient manually labeled training data for every new
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scenario. Moreover, it is often prohibitively difficult and expen-
sive to obtain enough labeled data. To alleviate this problem,
domain adaptation (Pan & Yang, 2010; Zhuang, Cheng, Luo, Pan
and He, 2015), which aims to adapt the feature representation
learned in the source domain with rich label information to the
target domain with less or even no label information, has received
much attention in recent years.

Recent domain adaptation methods achieve remarkable re-
sults by embedding domain adaptation modules in the pipeline
of deep feature learning to extract domain-invariant representa-
tions. This can generally be achieved by optimizing some mea-
sures of domain shift (Pan & Yang, 2010; Quionero-Candela,
Sugiyama, Schwaighofer, & Lawrence, 2009), e.g., maximummean
discrepancy (Long, Cao, Wang, & Jordan, 2015; Tzeng, Hoffman,
Zhang, Saenko, & Darrell, 2014), correlation distances (Sun, Feng,
& Saenko, 2016; Sun & Saenko, 2016), or minimizing an approxi-
mate domain discrepancy distance through an adversarial objec-
tive with respect to a domain discriminator (Ganin & Lempitsky,
2015; Tzeng, Hoffman, Saenko, & Darrell, 2017).

Most of the recent deep domain adaptation methods are
based on convolutional neural networks which have the ability
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Fig. 1. (a) is the original image, while the parts of information in (b), (c), (d) are captured from (a) by different structures. (b), (c), (d) only contain part of the
saturation, brightness and hue information, respectively.
Source: The original image is from the Office31 dataset (Saenko, Kulis, Fritz, & Darrell, 2010).

to extract abstract representations from high-dimensional im-
ages. However, this feature extraction process might lose some
important information. Hence, comparing to the original images,
the representations may only contain partial instead of complete
information, e.g., only contain part of the saturation, brightness,
and hue information. An intuitive example is given in Fig. 1.
Fig. 1(a) is the original image, while Figs. 1(b)∼1(d) are the trans-
formed forms. More importantly, we find that all transformed
images only contain partial information, thus they may give us
wrong or distorted facts of the real image. Therefore, we need to
observe the objects from multiple points to get a comprehensive
understanding.

The previous deep domain adaptation methods mainly align
the distributions from representations extracted from the source
and target domain data by a single structure, i.e., they are single-
representation adaptation methods. Similar to the transformed
images in the example, the representations only contain partial
information, hence the alignment also focuses on partial infor-
mation. Hence, this might lead to unsatisfying transfer learning
performance. To fully understand the objects, more represen-
tations should be considered when aligning the distributions.
To this end, different structures of convolutional neural net-
works provide an option to extract multiple representations from
images. Along this line, we propose Multi-Representation Adap-
tation (MRA), which tries to align the distributions of the source
and target domains using multiple representations extracted by
a hybrid neural structure.

Specifically, we propose a Multi-Representation Adaptation
Networks (MRAN) to align distributions of multiple representa-
tions in a domain-specific layer across domains for unsupervised
domain adaptation. To enable MRA, we propose a hybrid neural
structure named Inception Adaptation Module (IAM) to extract
multiple representations from images. A key novelty over previ-
ous single-representation adaptation methods is the capability of
MRAN to learn multiple domain-invariant representations which
contain more information. Furthermore, the nonparametric Max-
imum Mean Discrepancy (Gretton, Borgwardt, Rasch, Schölkopf,
& Smola, 2012) (MMD) is extended to compute the adaptation
loss based on conditional distribution, and integrated into deep
neural networks. The IAM method can be implemented by most
feed-forward models and trained efficiently using standard back-
propagation. Extensive experiments performed on three bench-
mark datasets show that MRAN can achieve remarkable perfor-
mance compared with state-of-the-art competitors.

The contributions of this paper are summarized as follows.
(1) To the best of our knowledge, we are the first to learn
multiple different domain-invariant representations by Inception
Adaptation Module (IAM) for cross-domain image classification.
(2) A novel Multi-Representation Adaptation Network (MRAN) is
proposed to align distributions of multiple different representa-
tions which might contain more information about the images.

(3) MMD is extended to measure the discrepancy of conditional
distributions across different domains in deep neural networks.
(4) Finally, we conduct extensive experiments to validate the
effectiveness of MRAN.

2. Related work

Our work mainly belongs to domain adaptation, and we will
introduce the related work in three aspects: image classification,
domain adaptation, and multi-view learning.

Image Classification. As one of the fundamental technolo-
gies in computer vision, image classification has widely been
researched. On the basis of the assumption of the parameter
on data, the image classifiers could be divided into parametric
and non-parametric classifier. For parametric classifier, the pa-
rameters like mean vector and covariance matrix are frequently
generated from training samples, such as Maximum likelihood,
linear discriminant analysis. While non-parametric classifiers do
not make use of statistical parameters to calculate class separa-
tion, such as neural network, svm, decision tree. Recently, the
deep neural networks (He et al., 2016; Simonyan & Zisserman,
2015; Wang, He and Li, 2018, 2018) have achieved remarkable
performance for image classification. With the guidance of the
human visual system (HVS), Wang, He et al. (2018) explore the at-
tention mechanism and propose a novel end-to-end attention re-
current convolutional network (ARCNet) for scene classification.
LSLRR (Wang, He et al., 2018) improves the classical low-rank
representation with locality constraint criterion and structure
preserving strategy. However, they assume the training and test
sets have the same distributions. Hence, these methods could not
solve the cross-domain problems.

Domain Adaptation. Recent years have witnessed many ap-
proaches to solve the visual domain adaptation problem, which
is also commonly framed as the visual dataset bias problem (Pan
& Yang, 2010; Quionero-Candela et al., 2009; Zhuang, Luo, He and
Shi, 2015). Previous shallowmethods for unsupervised adaptation
include re-weighting the training data so that they could more
closely reflect those in the test distribution (Jiang & Zhai, 2007),
and finding a transformation in a lower-dimensional manifold
that draws the source and target subspaces closer (Gong, Shi, Sha,
& Grauman, 2012; Pan, Tsang, Kwok, & Yang, 2011).

Most existing methods learn a shallow representation model
to minimize domain discrepancy, which cannot suppress
domain-specific explanatory factors of variations. Deep networks
learn abstract representations that disentangle the explanatory
factors of variations behind data (Bengio, Courville, & Vincent,
2013) and extract transferable factors underlying different pop-
ulations (Glorot, Bordes, & Bengio, 2011; Oquab, Bottou, Laptev,
& Sivic, 2014). Thus deep neural networks have been explored
for domain adaptation (Ganin & Lempitsky, 2015; Long et al.,
2015; Sun & Saenko, 2016; Tzeng et al., 2017, 2014; Zhu, Zhuang,
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Yang, Yang and He, 2019; Zhuang, Cheng et al., 2015), where
significant performance gains have been witnessed compared to
prior shallow transfer learning methods.

The main strategy of deep transfer networks is to guide feature
learning by minimizing the difference between the source and
target distributions. Some recent works bridge deep learning
and domain adaptation (Ganin & Lempitsky, 2015; Long et al.,
2015; Long, Zhu, Wang, & Jordan, 2017; Pei, Cao, Long, & Wang,
2018; Tzeng, Hoffman, Darrell, & Saenko, 2015; Tzeng et al.,
2017), which extend deep convolutional neural networks (CNNs)
to domain adaptation. These works are mainly divided into two
class, embedding methods by adding adaptation layers through
which the embedding of distributions is matched (Long et al.,
2015, 2017; Tzeng et al., 2014; Zhu, Zhuang and Wang, 2019),
and adversarial methods by adding a subnetwork as domain
discriminator while the deep features are learned to confuse the
discriminator in a domain-adversarial training paradigm (Bous-
malis, Silberman, Dohan, Erhan, & Krishnan, 2017; Ganin et al.,
2016; Hoffman et al., 2018; Kang, Zheng, Yan, & Yang, 2018;
Kumar et al., 2018; Liu & Tuzel, 2016; Saito, Watanabe, Ushiku, &
Harada, 2018; Tzeng et al., 2017; Zhang, Ouyang, Li, & Xu, 2018).
And recent related work extends the adversarial methods to a
generative adversarial way (Bousmalis et al., 2017). Besides these
two mainstreams, there are diverse methods to learn domain-
invariant features: DRCN (Ghifary, Kleijn, Zhang, Balduzzi, & Li,
2016) reconstructs features to images and makes the transformed
images are similar to original images. D-CORAL (Sun & Saenko,
2016) ‘‘recolors’’ whitened source features with the covariance
of features from the target domain. All of these methods focus
on aligning distributions of representations extracted by a sin-
gle structure. However, the representations might only contain
partial information. Our MRA could cover more information by
aligning distributions of multiple representations extracted by a
hybrid structure. Therefore, the representation capability can be
enhanced.

Multi-view learning is concerned with the problem of ma-
chine learning from data represented by multiple distinct fea-
ture sets. The recent emergence of this learning mechanism is
largely motivated by the property of data from real applica-
tions where examples are described by different feature sets or
different ‘views’. And multi-view learning arouses amounts of
interests in the past decades (Blum & Mitchell, 1998; Gönen
& Alpaydın, 2011; Yarowsky, 1995). Different from multi-view
learning which needs data represented by multiple distinct fea-
ture sets, Multi-Representation learning focuses on extracting the
multiple representations from the single view of data by a hybrid
structure.

3. Multi-representation adaptation networks

In unsupervised domain adaptation, we are given a source
domain Ds = {(xsi , y

s
i )}

ns
i=1 of ns labeled examples where ysi ∈

{1, 2, . . . , C} and a target domain Dt = {xtj }
nt
j=1 of nt unlabeled

examples. The source domain and the target domain are sampled
from different probability distributions P and Q respectively, and
P ̸= Q . The goal is to design a deep neural network y = f (x) that
formally reduces the shifts of the distributions across domains
and enables learning multiple transferable representations, such
that the target risk Rt (f ) = E(x,y) Q [f (x) ̸= y] can be minimized
by minimizing the source risk and domain discrepancy.

In recent years, the deep transfer networks have achieved
remarkable results (Long et al., 2015; Tzeng et al., 2017). We call
these methods as single-representation adaptation methods since
they only align the distributions from representations extracted
by a single structure. However, the single-representation adap-
tation methods focus on the partial information of the samples

mentioned above, thus they might not work well for diverse sce-
narios. Comparing to single-representation methods which only
contain partial information, multi-representation models might
cover more information. In other words, we aim to learn multiple
domain-invariant representations. Along this line, we propose
a hybrid structure named Inception Adaptation Module (IAM)
which contains multiple substructures to extract multiple repre-
sentations from images.

To achieve MRA, it is necessary to minimize the discrep-
ancy between the distributions of the multiple representations
extracted from the source and target domains. To this end, Maxi-
mum mean discrepancy (MMD) (Long et al., 2015; Tzeng et al.,
2014) is extended to conditional maximum mean discrepancy
(CMMD) which could compute the discrepancy of conditional
distributions for multiple representations. Based on IAM and
CMMD, we propose multi-representation adaptation network
(MRAN). Note that, different from previous methods minimizing
the discrepancy between the distributions of single representa-
tion, MRAN can align the distributions of multiple representa-
tions.

3.1. Inception adaptation module

Similar structures are adopted for recent convolutional neural
networks, e.g., ResNet (He et al., 2016), DenseNet (Huang, Liu,
Weinberger, & van der Maaten, 2017), and generally the structure
y = f (x) is divided into three parts g(·), h(·), s(·). The first part is
the convolutional neural network g(·), which is used to convert
high-pixel images to low-pixel ones; the second part h(·) is the
global average pooling to extract representations from low-pixel
images; the third part is the classifier s(·) to predict labels. Hence,
y = f (x) is reformulated as y = (s◦h◦g)(x) ( (h◦g)(x) = h(g(x))).

Some recent deep transfer methods (Long et al., 2017; Pei
et al., 2018) use the activations of the global average pooling layer
as image representations and then align the distributions of the
single representation. However, this single-representation adap-
tation manner might miss some important information for further
performance improvement. Thus it is necessary to learn multiple
domain-invariant representations by minimizing the discrepancy
between the distributions of multiple representations.

To learn multiple different domain-invariant representations,
the easiest way is to train multiple different convolutional neural
networks. However, it would be very time-consuming to train
multiple convolutional neural networks. It is well known that
different structure could extract different representations from
images. Hence, we use a hybrid structure IAM consisted of mul-
tiple substructures to extract multiple representations from low-
pixel images. As an intuitive example shown in Fig. 2, IAM has
multiple substructures h1(·), . . . , hnr (·) (nr is the number of sub-
structures), which are different from each other. With the IAM
replacing the global average pooling, multiple representations
(h1 ◦ g)(X), . . . , (hnr ◦ g)(X) can be obtained. Comparing to the
single representation, the multiple representations could cover
more information. Hence, aligning the distributions of the mul-
tiple representations with more information could achieve better
performance. The adaptation task could be achieved by mini-
mizing the discrepancy of distributions based on the multiple
representations:

min
f

nr∑
i

d̂((hi ◦ g)(Xs), (hi ◦ g)(Xt )), (1)

where X is the set of x and d̂(·, ·) is an estimator of discrepancy
between two distributions. To achieve the classification task, the
concatenated vectors [(h1◦g)(X); . . . ; (hnr ◦g)(X)] are put into the
classifier s(·) which contains a fully connected layer and a softmax
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Fig. 2. Multi-Representation Adaptation Network (MRAN) aligns the conditional distributions of multiple representations. Inception Adaptation Module (IAM) could
extract multiple representations from low-pixel images. By minimizing CMMD loss, the conditional distributions between the source and target domains are drawn
close.

layer. The fully connected layer is mainly used to recombine the
multiple representations, and the softmax layer is used to output
the predicted labels. Finally, the neural network y = f (x) with
IAM is reformulated as:

y = f (x) = s([(h1 ◦ g)(X); . . . ; (hnr ◦ g)(X)]). (2)

Different from previous single-representation adaptation net-
works, the deep transfer networks with IAM are capable to
learn multiple domain-invariant representations. The IAM is a
multi-representation extractor. Moreover, the multiple domain-
invariant representations can cover more information. It is worth
noting that the IAM can be implemented by most feed-forward
models. When you implement IAM in other networks, you just
replace the last average pooling layer with IAM.

3.2. Conditional maximum mean discrepancy

To measure Eq. (1), a major issue is to choose a proper dis-
tance measure. We first introduce the non-parametric distance
estimation Maximum Mean Discrepancy (MMD) (Gretton et al.,
2012) which has been widely used to measure the discrepancy of
marginal distributions:

d̂H(Xs,Xt ) =

 1
ns

∑
xi∈DXs

φ(xi) −
1
nt

∑
xj∈DXt

φ(xj)


2

H

. (3)

By minimizing Eq. (3), the marginal distributions between the
source and target domains are drawn close.

According to Elhamifar and Vidal (2013), the data samples
from the same class should lay on the same subspace, even if
they belong to different domains. Hence, we reduce the difference
in the conditional distributions instead of marginal distributions.
Indeed, minimizing the discrepancy between the conditional dis-
tributions Ps(ys|xs) and Qt (yt |xt ) is crucial for robust distribution
adaptation (Sun, Chattopadhyay, Panchanathan, & Ye, 2011). Un-
fortunately, it is nontrivial to match the conditional distributions,
even by exploring sufficient statistics of the distributions, since
there are no labeled data in the target domain, i.e., Q (yt , xt )
cannot be modeled directly.

Fortunately, the output of the deep neural network ŷti = f (xti )
could be used as the pseudo label for data in target domain.
Since the posterior probabilities P(ys|xs) and Q (yt |xt ) are hard to
represent (Long, Wang, Ding, Sun, & Philip, 2013), we resort to
explore the sufficient statistics of class-conditional distributions
P(xs|ys = c) and Q (xt |yt = c) instead w.r.t. each class c ∈

{1, . . . , C}. Now with the true labels of source domain data and
pseudo labels of target domain data, we can essentially match
the class-conditional distributions P(xs|ys = c) and Q (xt |yt = c).

Here we modify MMD to measure the distance between the class-
conditional distributions P(xs|ys = c) and Q (xt |yt = c), called
CMMD:

d̂H(Xs,Xt ) =
1
C

C∑
c=1


1

n(c)
s

∑
xs(c)i ∈D(c)

Xs

φ(xs(c)i )

−
1

n(c)
t

∑
xt(c)j ∈D(c)

Xt

φ(xt(c)j )


2

H

.

(4)

By minimizing Eq. (4), the conditional distributions between the
source and target domains are drawn close. Though we adopt
the pseudo labels of the target domain, we expect to iteratively
improve the labeling quality during the optimization.

3.3. Multi-representation adaptation network

To enable effective unsupervised domain adaptation, we pro-
pose Multi-Representation Adaptation Network (MRAN) as
shown in Fig. 2, which aligns the distributions of multiple rep-
resentations extracted by IAM in an end-to-end deep learning
model. Note that the features in the lower layers of the network
are transferable and hence will not require a further distribution
matching (Yosinski, Clune, Bengio, & Lipson, 2014). The loss of
MRAN is formulated as:

min
f

1
ns

ns∑
i=1

J(f (xsi ), y
s
i ) + λ

nr∑
i

d̂((hi ◦ g)(Xs), (hi ◦ g)(Xt )), (5)

where J(·, ·) is the cross-entropy loss function (classification loss),
d̂(·, ·) is domain adaptation loss calculated by Eq. (4), and λ > 0 is
the trade-off parameter. We implement MRAN based on ResNet
and replace the global average pooling by IAM. Specifically, these
layers in the network are tailored to task-specific structures,
which are adapted by minimizing classification error and CMMD.

Note that, training deep CNN requires a large amount of la-
beled data, which is prohibitive for many domain adaptation
applications, so we start with the CNN pre-training on Ima-
geNet2012 data and fine-tune it as Long et al. (2017). The training
of MRAN mainly follows standard mini-batch stochastic gradi-
ent descent(SGD) algorithm. In each mini-batch, we sample the
same number of source domain data and target domain data to
eliminate the bias caused by domain size.

4. Experiments

We evaluate the Multi-Representation Adaptation Network
(MRAN) against state-of-the-art domain adaptation methods on
three datasets: ImageCLEF-DA, Office-31 and Office-Home.
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4.1. Experimental setup

4.1.1. Datasets
ImageCLEF-DA1 is a benchmark dataset for ImageCLEF 2014

domain adaptation challenge, which is organized by selecting
the 12 common categories shared by the following three public
datasets, each is considered as a domain: Caltech-256 (C), Ima-
geNet ILSVRC 2012 (I), and Pascal VOC 2012 (P). There are 50
images in each category and 600 images in each domain. We use
all domain combinations and build 6 transfer tasks: I → P, P →

I, I → C, C → I, C → P, P → C.
Office-31 (Saenko et al., 2010) is a benchmark for domain

adaptation, comprising 4,110 images in 31 classes collected from
three distinct domains: Amazon(A), which contains images down-
loaded from amazon.com, Webcam(W) and DSLR(D), which con-
tain images taken by web camera and digital SLR camera with
different photographical settings. The images in each domain are
unbalanced across the 31 classes. To enable unbiased evaluation,
we evaluate all methods on all six transfer tasks A → W, D →

W, W → D, A → D, D → A, W → A as in Ganin and Lempitsky
(2015), Long et al. (2017) and Tzeng et al. (2014).

Office-Home (Venkateswara, Eusebio, Chakraborty, & Pan-
chanathan, 2017) is a new dataset which consists 15,588 images
larger than Office-31 and ImageCLEF-DA. It consists of images
from 4 different domains: Artistic images (A), Clip Art (C), Product
images (P) and Real-World images (R). For each domain, the
dataset contains images of 65 object categories collected in office
and home settings.

4.1.2. Baselines
We compare MRAN with various kinds of competitors, in-

cluding Transfer Component Analysis (TCA) (Pan et al., 2011),
Geodesic Flow Kernel (GFK) (Gong et al., 2012), Deep Convo-
lutional Neural Network ResNet (He et al., 2016), Deep Do-
main Confusion (DDC) (Tzeng et al., 2014), Deep Adaptation
Network (DAN) (Long et al., 2015), Deep CORAL (D-CORAL) (Sun
& Saenko, 2016), Reverse Gradient (RevGrad) (Ganin & Lempitsky,
2015), Joint Adaptation Networks (JAN) (Long et al., 2017), Multi-
Adversarial Domain Adaptation (MADA) (Pei et al., 2018) and
Collaborative and Adversarial Network (CAN) (Zhang et al., 2018).

To further validate the effectiveness of conditional distribution
adaptation and IAM, we also evaluate several variants of MRAN:
(1) MRAN (CMMD), which adds the CMMD module to ResNet; (2)
MRAN (IAM), which uses IAM without adaptation loss; (3) MRAN
(CMMD+IAM), which uses IAM with CMMD as the adaptation
loss. Note that MRAN (CMMD) improves DAN (Long et al., 2015)
by replacing the multiple MMD penalties in DAN by the CMMD
penalty. Besides, MRAN (IAM) improves ResNet (He et al., 2016)
by replacing the global average pooling layers by IAM. Inspired
by GoogLeNet (Szegedy et al., 2015), we use four substructures
(nr = 4) in this work. However, you can set any number of
substructures for other applications. (substructure1: conv1 × 1,
conv5 × 5; substructure2: conv1 × 1, conv3 × 3, conv3 × 3;
substructure3: conv1 × 1; substructure4: pool, conv1 × 1).

4.1.3. Implementation details
We employ ResNet (50 layers) to learn transferable deep rep-

resentations and use the activations of the last feature layer
pool5 as image representation for baselines (Long et al., 2017).
Following standard evaluation protocols for unsupervised domain
adaptation (Ganin & Lempitsky, 2015; Long et al., 2015), we
use all labeled source examples as the source domain and all
unlabeled target examples as the target domain. The average
classification accuracy and standard error over three random

1 http://imageclef.org/2014/adaptation.

trials are reported for comparison. For all baseline methods, we
either follow their original model selection procedures or conduct
transfer cross-validation (Zhong, Fan, Yang, Verscheure, & Ren,
2010) if their model selection strategies are not specified. For
MMD-based methods (TCA, DDC, DAN, RTN, JAN, MRAN), we
adopt Gaussian kernel with bandwidth set to median pairwise
squared distances on the training data (Gretton et al., 2012).

All deep methods are implemented based on the pytorch
framework, and fine-tune from pytorch-provided models of
ResNet (He et al., 2016). We fine-tune all convolutional and
pooling layers and train the classifier layer via back propagation.
Since the classifier is trained from scratch, we set its learning
rate to be 10 times that of the other layers. We use mini-batch
stochastic gradient descent (SGD) with momentum of 0.9 and the
learning rate annealing strategy in RevGrad (Ganin & Lempitsky,
2015): the learning rate is not selected by a grid search due
to high computational cost, it is adjusted during SGD using the
following formula: ηp =

η0
(1+αp)β , where p is the training progress

linearly changing from 0 to 1, η0 = 0.01, α = 10 and β = 0.75,
which is optimized to promote convergence and low error on the
source domain. To suppress noisy activations at the early stages
of training, instead of fixing the adaptation factor λ, we gradually
change it from 0 to 1 by a progressive schedule: λp =

2
exp(−γ p) −1,

and γ = 10 is fixed throughout the experiments (Ganin &
Lempitsky, 2015). This progressive strategy significantly stabilizes
parameter sensitivity and eases model selection for MRAN.

4.2. Results

All the results of three datasets are shown in Tables 1–3,
respectively. From these results, we have the following insightful
observations:

• MRAN (CMMD+IAM) outperforms all comparison methods
on most transfer tasks. Particularly, MRAN (CMMD+IAM) sub-
stantially improves the accuracy by large margins on ImageCLEF-
DA dataset, which have the same number of images in different
domains and different classes. The encouraging results indicate
the importance of incorporating CMMD and IAM and validate
that MRAN (CMMD+IAM) is able to learn better transferable
representations.

• Comparing DAN with MRAN (CMMD) with the same Gaus-
sian kernel, the only difference is that MRAN (CMMD) aligns the
conditional distributions, while DAN aligns the marginal distribu-
tions. MRAN (CMMD) is better than DAN, and the reason may be
that the data samples from the same category should lay in the
same subspace, even if they belong to different domains (Elham-
ifar & Vidal, 2013).

• MRAN (CMMD + IAM) substantially outperforms MRAN
(CMMD), which shows the importance of aligning distributions
of multiple representations rather than single representation.

• MRAN (CMMD+IAM) performs better than MRAN (IAM)
while other deep transfer learning methods perform better than
ResNet, which indicates the importance of transfer learning.

Note that, different from all the previous deep transfer learn-
ing methods that only align the marginal distributions of rep-
resentations extracted by a single structure, while our model
aligns the conditional distributions of multiple representations
extracted by a hybrid structure (IAM), which implies that MRAN
(CMMD+IAM) has a more powerful transferable ability.

4.3. Analysis

To study the learnt representations of our model, we use
MRAN (r1) as the representations extracted by the substructure1
(conv1 × 1, conv5 × 5), MRAN (r2) as the representations ex-
tracted by the substructure2 (conv1 × 1, conv3 × 3, conv3 × 3),

http://imageclef.org/2014/adaptation
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Table 1
Accuracy (%) on ImageCLEF-DA for unsupervised domain adaptation (ResNet).
Method I → P P → I I → C C → I C → P P → C Avg

ResNet (He et al., 2016) 74.8 ± 0.3 83.9 ± 0.1 91.5 ± 0.3 78.0 ± 0.2 65.5 ± 0.3 91.2 ± 0.3 80.7
DDC (Tzeng et al., 2014) 74.6 ± 0.3 85.7 ± 0.8 91.1 ± 0.3 82.3 ± 0.7 68.3 ± 0.4 88.8 ± 0.2 81.8
DAN (Long et al., 2015) 75.0 ± 0.4 86.2 ± 0.2 93.3 ± 0.2 84.1 ± 0.4 69.8 ± 0.4 91.3 ± 0.4 83.3
RevGrad (Ganin & Lempitsky, 2015) 75.0 ± 0.6 86.0 ± 0.3 96.2 ± 0.4 87.0 ± 0.5 74.3 ± 0.5 91.5 ± 0.6 85.0
D-CORAL (Sun & Saenko, 2016) 76.9 ± 0.2 88.5 ± 0.3 93.6 ± 0.3 86.8 ± 0.6 74.0 ± 0.3 91.6 ± 0.3 85.2
JAN (Long et al., 2017) 76.8 ± 0.4 88.0 ± 0.2 94.7 ± 0.2 89.5 ± 0.3 74.2 ± 0.3 91.7 ± 0.3 85.8
MADA (Pei et al., 2018) 75.0 ± 0.3 87.9 ± 0.2 96.0 ± 0.3 88.8 ± 0.3 75.2 ± 0.2 92.2 ± 0.3 85.8
CAN (Zhang et al., 2018) 78.2 87.5 94.2 89.5 75.8 89.2 85.8

MRAN (IAM) 76.2 ± 0.7 88.4 ± 0.5 91.4 ± 0.2 84.2 ± 0.1 69.2 ± 0.2 88.6 ± 0.3 83.0
MRAN (CMMD) 78.7 ± 0.2 91.1 ± 0.2 94.2 ± 0.4 88.9 ± 0.1 75.1 ± 0.3 93.1 ± 0.1 86.9
MRAN (CMMD + IAM) 78.8 ± 0.3 91.7 ± 0.4 95.0 ± 0.5 93.5 ± 0.4 77.7 ± 0.5 93.1 ± 0.3 88.3

Table 2
Accuracy (%) on Office-31 for unsupervised domain adaptation (ResNet).
Method A → W D → W W → D A → D D → A W → A Avg

ResNet (He et al., 2016) 68.4 ± 0.5 96.7 ± 0.5 99.3 ± 0.1 68.9 ± 0.2 62.5 ± 0.3 60.7 ± 0.3 76.1
TCA (Pan et al., 2011) 74.7 ± 0.0 96.7 ± 0.0 99.6 ± 0.0 76.1 ± 0.0 63.7 ± 0.0 62.9 ± 0.0 79.3
GFK (Gong et al., 2012) 74.8 ± 0.0 95.0 ± 0.0 98.2 ± 0.0 76.5 ± 0.0 65.4 ± 0.0 63.0 ± 0.0 78.8
DDC (Tzeng et al., 2014) 75.8 ± 0.2 95.0 ± 0.2 98.2 ± 0.1 77.5 ± 0.3 67.4 ± 0.4 64.0 ± 0.5 79.7
DAN (Long et al., 2015) 83.8 ± 0.4 96.8 ± 0.2 99.5 ± 0.1 78.4 ± 0.2 66.7 ± 0.3 62.7 ± 0.2 81.3
D-CORAL (Sun & Saenko, 2016) 77.7 ± 0.3 97.6 ± 0.2 99.7 ± 0.1 81.1 ± 0.4 64.6 ± 0.3 64.0 ± 0.4 80.8
RevGrad (Ganin & Lempitsky, 2015) 82.0 ± 0.4 96.9 ± 0.2 99.1 ± 0.1 79.7 ± 0.4 68.2 ± 0.4 67.4 ± 0.5 82.2
JAN (Long et al., 2017) 85.4 ± 0.3 97.4 ± 0.2 99.8 ± 0.2 84.7 ± 0.3 68.6 ± 0.3 70.0 ± 0.4 84.3
MADA (Pei et al., 2018) 90.0 ± 0.1 97.4 ± 0.1 99.6 ± 0.1 87.8 ± 0.2 70.3 ± 0.3 66.4 ± 0.3 85.2
CAN (Zhang et al., 2018) 81.5 98.2 99.7 85.5 65.9 63.4 82.4

MRAN (IAM) 77.4 ± 0.5 96.1 ± 0.5 99.5 ± 0.1 81.9 ± 0.8 64.2 ± 0.4 64.8 ± 0.9 80.7
MRAN (CMMD) 87.0 ± 0.4 97.7 ± 0.2 100.0 ± 0.0 85.8 ± 0.5 67.3 ± 0.1 66.2 ± 0.2 84.0
MRAN (CMMD + IAM) 91.4 ± 0.1 96.9 ± 0.3 99.8 ± 0.2 86.4 ± 0.6 68.3 ± 0.5 70.9 ± 0.6 85.6

Table 3
Accuracy (%) on Office-Home for unsupervised domain adaptation (ResNet).
Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg

ResNet (He et al., 2016) 48.5 68.3 75.4 53.8 64.4 66.1 52.7 42.8 74.1 65.3 49.6 79.7 61.1
DDC (Tzeng et al., 2014) 50.5 66.5 75.0 53.6 62.6 65.1 53.2 44.8 73.7 64.1 50.8 78.2 61.5
D-CORAL (Sun & Saenko, 2016) 51.5 68.9 76.3 55.8 65.1 67.2 54.7 45.3 75.2 67.0 53.6 80.3 63.4
DAN (Long et al., 2015) 53.3 68.8 75.9 56.9 64.8 66.5 56.0 49.7 75.0 68.2 56.5 80.3 64.3
JAN (Long et al., 2017) 52.6 68.9 76.3 57.7 66.0 67.6 56.3 48.5 76.0 68.1 55.7 81.2 64.6

MRAN (IAM) 49.6 68.3 75.0 51.1 62.6 64.3 53.4 43.6 73.9 65.2 50.7 79.1 61.4
MRAN (CMMD) 53.5 68.7 76.1 57.5 66.1 68.2 57.3 51.4 75.9 68.3 57.4 81.1 65.1
MRAN (CMMD + IAM) 53.8 68.6 75.0 57.3 68.5 68.3 58.5 54.6 77.5 70.4 60.0 82.2 66.2

MRAN (r3) as the representations extracted by the substructure3
(conv1 × 1) and MRAN (r4) as the representations extracted by
the substructure4 (pool, conv1 × 1). In addition, MRAN means
the combined representations after fully connected layer.

Feature Visualization: We visualize the network represen-
tations of task A → W learned by MRAN and DAN using t-SNE
embeddings (Donahue et al., 2014) in Figs. 3 and 3(f).

Comparing the representations given by MRAN (r1), MRAN
(r2), MRAN (r3), MRAN (r4) in Figs. 3(b)–3(e), the multiple repre-
sentations extracted by different substructures have different dis-
tributions and a different number of wrong clustering. All of these
demonstrate that different neural structures have the ability to
extract different representations and the multiple representations
have different information. Comparing with the representations
given by MRAN and DAN in Figs. 3(a) and 3(f), the combined
representations given by MRAN in Fig. 3(a) show that the target
categories are discriminated much more clearly.

Distribution Discrepancy: The domain adaptation theory
(Ben-David et al., 2010; Mansour, Mohri, & Rostamizadeh, 2009)
suggests the distribution discrepancy measure A-distance, to-
gether with the source risk, will bound the target risk. Specifically,
the proxy A-distance is defined as dA = 2(1 − 2ϵ), where ϵ is
the generalization error of a classifier (e.g. kernel SVM) trained
on the binary problem of discriminating the source and target
domain data. Fig. 4(a) shows the results of dA on tasks A →

W, W → D with learnt representations of CNN, DAN and MRAN.
The dA of the combined representations in Fig. 4(a) are smaller
than the dA of CNN, DAN, MRAN (r1), MRAN (r2), MRAN (r3) and
MRAN (r4). All of these results demonstrate that the combined
representations from multiple representations are better trans-
ferable than single representation. In addition, these also prove
that MRA which align distributions of multiple representations
extracted by a hybrid structure could achieve better performance
than previous single-representation adaptation methods.

Parameter Sensitivity: We check the sensitivity of multiple
adaptation loss parameter λ, which controls the relative weight
for multiple adaptation loss. Fig. 4(b) shows the performance
of MRAN based on ResNet on tasks A → W and C → P by
varying λ ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2}. The accuracy of
MRAN first increases and then decreases as λ varies and displays
as a bell-shaped curve. From the results, we can find a proper
trade-off value about 0.5 to achieve good transfer performance.

Time Complexity: CMMD loss involving pseudo label and
the IAM indeed need some extra computations. We conduct
additional experiments to record the time consuming of ResNet,
DAN, MRAN(IAM) and MRAN(CMMD) for each iteration. All the
experiments are conducted on a GeForce GTX 1080 Ti GPU, and
the average time of each iteration over 100 iterations is recorded.
The results are listed as follows: ResNet (0.147 s), DAN (0.277 s),
MRAN(IAM) (0.173 s) and MRAN(CMMD) (0.291 s). Comparing
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Fig. 3. Feature visualization: t-SNE of representations on source and target (a) MRAN; (b) MRAN (r1); (c) MRAN (r2); (d) MRAN (r3); (e) MRAN (r4); (f) DAN.

Fig. 4. (a) A-distance; (b) parameter sensitivity of λ.

MRAN(IAM) with ResNet, we could find that the IAM takes 0.025
s more for each iteration which is very small. Comparing DAN
with MRAN(CMMD), the only difference is that DAN uses MMD
to align distributions and MRAN(CMMD) uses CMMD to align
distributions. MRAN(CMMD) spends 0.014 s more for each it-
eration than DAN, which is a common property of conditional
alignment methods (Pei et al., 2018). Overall, though the use of
IAM and CMMD would slightly increase the time complexity, it is
reasonably and can greatly improve the performance.

Insightful Findings: We get some findings from the experi-
ments. (1) The IAM could extract multiple representations from
images. The different representations could represent diverse ab-
stract (underlying) views and we could see the t-SNE embeddings
of different representations are different in Fig. 3. (2) The MRA
method (our MRAN) could achieve better performance than the
single-representation adaptation methods as we could see in Sec-
tion 4.2, which also demonstrate the effectiveness of MRA. (3)
Aligning conditional distributions are more effective than aligning
marginal distributions.

5. Conclusion

To overcome the problem of aligning distributions of only
one single representation from the source and target domains,

we tried to propose Multi-Representation Adaptation (MRA) to
align the distributions of multiple representations. Along this line,
we proposed a framework of Multi-Representation Adaptation
Networks (MRAN) to learn multiple domain-invariant represen-
tations which might contain more information. In particularly,
we proposed a hybrid neural structure named Inception Adap-
tation Module (IAM) to extract multiple representations from
images. Note that, our framework can be adapted to different
networks. Moreover, we extended the marginal distribution dis-
crepancy measure MMD to conditional MMD, which is effectively
incorporated in our model. Finally, extensive experiments are
conducted on three datasets to demonstrate the effectiveness of
the proposed model.
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