
1541-1672 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIS.2020.2988604, IEEE Intelligent
Systems

IEEE INTELLIGENT SYSTEMS, VOL. XX, NO. X, 2019 1

FedHealth: A Federated Transfer Learning
Framework for Wearable Healthcare

Yiqiang Chen, Xin Qin, Jindong Wang, Chaohui Yu, Wen Gao

Abstract—With the rapid development of computing technology, wearable devices make it easy to get access to people’s health
information. Smart healthcare achieves great success by training machine learning models on a large quantity of user personal data.
However, there are two critical challenges. Firstly, user data often exists in the form of isolated islands, making it difficult to perform
aggregation without compromising privacy security. Secondly, the models trained on the cloud fail on personalization. In this paper, we
propose FedHealth, the first federated transfer learning framework for wearable healthcare to tackle these challenges. FedHealth
performs data aggregation through federated learning, and then builds relatively personalized models by transfer learning. Wearable
activity recognition experiments and real Parkinson’s disease auxiliary diagnosis application have evaluated that FedHealth is able to
achieve accurate and personalized healthcare without compromising privacy and security. FedHealth is general and extensible in many
healthcare applications.

Index Terms—Federated learning, Transfer learning, Wearable healthcare.
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1 INTRODUCTION

A CTIVITIES of daily living (ADL) are highly related to
people’s health. Recently, the development of wear-

able technologies helps people to understand their health
status by tracking activities using wearable devices such
as smartphone, wristband, and smart glasses. Wearable
healthcare has the potential to provide early warnings to
several cognitive diseases such as Parkinson’s [1] and small
vessel diseases [2]. Other applications include mental health
assessment, fall detection, and sports monitoring [3]. In fact,
there is a growing trend for wearable healthcare over the
years.

In healthcare applications, machine learning models are
often trained on sufficient user data to track health status.
Unfortunately, there are two critical challenges in today’s
wearable healthcare (Figure 1). First of all, in real life, data
often exists in the form of isolated islands. Although there is
plenty of data in different organizations, it is not possible to
share them due to privacy and security concerns as shown in
Figure 1. This makes it hard to train powerful models using
the valuable data. Additionally, recently, China, the United
States, and the European Union enforced the protection
of user data via different regularizations [4], [5]. Hence,
the acquisition of massive user data is not possible in real
applications.

The other important issue is personalization. Most of the
methods are based on a common server model for nearly all
users. After acquiring sufficient user data to train a satisfac-
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Fig. 1. The data islanding and personalization problems in wearable
healthcare

tory machine learning model, the model is then distributed
to all user devices on which the daily health information can
be tracked. This process lacks personalization. As can be
seen, different users have different physical characteristics
and daily activity patterns. Therefore, the common model
fails to perform personalized healthcare.

In this paper, we propose FedHealth, the first feder-
ated transfer learning framework for wearable healthcare.
FedHealth can solve both of the data islanding and per-
sonalization problems. Through federated learning [6] and
homomorphic encryption [7], FedHealth aggregates the data
from separate organizations to build powerful machine
learning models with the users’ privacy well preserved.
After the cloud model is built, FedHealth utilizes transfer
learning methods to achieve personalized model learning
for each organization. The framework can incrementally
update. FedHealth is extensible and can be deployed to
many healthcare applications to continuously enhance their
learning abilities in real life.

Our contributions are as follows:
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1. We propose FedHealth, the first federated transfer
learning framework for wearable healthcare, which aggre-
gates the data from different organizations without compro-
mising privacy security, and achieves relatively personal-
ized model learning through knowledge transfer.

2. We show the excellent performance achieved by Fed-
Health in smartphone-based human activity recognition.
Experiments show that FedHealth dramatically improves
the recognition accuracy compared to traditional learning
approaches.

3. FedHealth is extensible and can be the standard frame-
work for many healthcare applications. Specifically, we de-
sign a FedHealth system and apply it in Parkinson’s disease
auxiliary diagnosis with the users’ privacy well preserved
and good performance achieved in the real situation.

2 RELATED WORK

2.1 Wearable Healthcare

Certain activities in daily life reflect early signals of some
cognitive diseases [8]. For instance, the change of gait
may result from small vessel disease or stroke. A lot of
researchers pay attention to monitor users’ activities using
body-worn sensors [9], through which daily activities and
sports activities can be recognized. With the development
of wearable technology, smartphone, wristbands, and smart
glasses provide easy access to this information.

It is noteworthy that traditional healthcare applications
often build the model by aggregating all the user data.
However, in real applications, data are often separate and
cannot be easily shared due to privacy issues [4]. Moreover,
the models built by applications lack the ability of personal-
ization.

2.2 Federated Transfer Learning

Federated machine learning was firstly proposed by
Google [10], where they trained machine learning models
based on distributed mobile phones all over the world. The
key idea is to protect user data during the process. Federated
learning has the ability to resolve the data islanding prob-
lems by privacy-preserving model training in the network.

Transfer learning aims at transferring knowledge from
existing domains to a new domain. The key idea is to reduce
the distribution divergence between different domains. To
this end, there are mainly two kinds of approaches: instance
reweighting [11] and feature matching [12]. Recently, deep
transfer learning methods have made considerable success
in many application fields. FedHealth is mainly related to
deep transfer learning. Most of the methods assume the
availability of training data, which is not realistic. FedHealth
makes it possible to do deep transfer learning in the fed-
erated learning framework without accessing the raw user
data. Therefore, it is more secure.

Federated transfer learning considers scenarios where
neither samples nor features have much in common. Re-
cently, more researchers start to focus on this field. Accord-
ing to [13], Liu et al. proposed a secure federated transfer
learning system in a two-party privacy preserving setting,
which more focused on data security. And some researchers
proposed federated domain adaptation approaches which

extended domain adaptation to federated setting constraints
to tackle data privacy and domain shift. Although the
research work is fast growing, federated transfer learning
faces many challenges to apply in practical application [13].
Our work is the first federated transfer learning framework
tailored for wearable healthcare applications and it can be
extended with various transfer learning methods.

3 THE PROPOSED FEDHEALTH FRAMEWORK

3.1 Problem Definition

We are given data from N different users (organiza-
tions), denote the users by {S1,S2, · · · ,SN} and the sensor
readings they provide by {D1,D2, · · · ,DN}. Conventional
methods train a model MALL by combining all the data
D = D1 ∪ D2 ∪ · · · ∪ DN . All the data have different
distributions. In our problem, we want to collaborate all the
data to train a federated transfer learning model MFED,
where any user Si does not expose its data Di to each
other. If we denote the accuracy as A, then the objective of
FedHealth is to ensure the accuracy of federated learning is
close to or superior to that of conventional learning denoted
by:

AFED −AALL > ∆, (1)

where ∆ is an extremely small non-negative real number.

3.2 Overview of the Framework

FedHealth aims to achieve accurate personal healthcare
through federated transfer learning without compromising
privacy security. Figure 2 gives an overview of the frame-
work. Without loss of generality, we assume there are 3
users (organizations) and 1 server, which can be extended
to the more general case. The framework mainly consists
of four procedures. Firstly, the cloud model on the server
is trained based on public datasets. Then, the cloud model
is distributed to all users where each of them can train
their own model on their data. Subsequently, the user model
can be uploaded to the cloud to help training a new cloud
model by model aggregation. Finally, each user can train
personalized models by utilizing the cloud model and data
and local data. In this step, since there is large distribution
divergence between server data and user data, transfer
learning is performed to make the model more tailored to
the user (right part in Figure 2). It is noteworthy that all the
parameter sharing processes do not involve any leakage of
user data through homomorphic encryption [7].

The federated learning paradigm is the main computing
model for the whole FedHealth framework. It deals with
model building and parameter sharing during the entire
process. After the server model is learned, it can be directly
applied to the user. This is just what traditional healthcare
applications do for model learning. It is obvious that the
samples in the server are having highly different probability
distribution with the data generated by each user. Therefore,
the common model fails in personalization. Additionally,
user models cannot easily be updated continuously due to
the privacy security issue.
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Fig. 2. Overview of the FedHealth framework. “User” represents organizations

3.3 Federated Learning

FedHealth adopts the federated learning paradigm [6] to
achieve encrypted model training and sharing. This step
mainly consists of two critical parts: cloud and user model
learning.

In FedHealth, we adopt deep neural networks to learn
both the cloud and user models. Deep neural networks
perform end-to-end feature learning and classifier training
by taking the raw inputs of the user data as inputs. Let fS
denote the server model to be learned, then the learning
objective becomes:

arg min
Θ
L =

n∑
i=1

`(yi, fS(xi)), (2)

where `(·, ·) denotes the loss for the network, e.g. cross-
entropy loss for classification tasks. {xi, yi}ni=1 are samples
from the server data with n their sizes. Θ denotes all the
parameters to be learned, i.e. the weight and bias.

After acquiring the cloud model, it is distributed to all
the users. As we can see from the “wall” in Figure 2, the
direct sharing of user information is forbidden. This pro-
cess uses homomorphic encryption [7] to avoid information
leakage. Since the encryption is not our main contribution,
we will show the process of additively homomorphic en-
cryption using real numbers. The encryption scheme of the
weight matrix and bias vector are following the same idea.
The additively homomorphic encryption of a real number
a is denoted as 〈a〉. In additively homomorphic encryption,
for any two numbers a and b, we have 〈a〉 + 〈b〉 = 〈a + b〉.
Therefore, the parameter sharing can be done without leak-
ing any information from the users. Through federated
learning, we can aggregate user data without compromising
privacy security.

Technically, the learning objective for user u is denoted
as:

arg min
Θu
Lu =

nu∑
i=1

`(yui , fu(xu
i )). (3)

After all the user model fu is trained based on the shared
cloud model, it is uploaded to the server for aggregation. It

has been evaluated that with shared initialization, averaging
the models can achieve good performance in loss reduction
in the approach of FederatedAveraging [14]. Thus, follow-
ing [14], we use model average to align user models, K user
models are averaged for the cloud model update in each
training round. Note that we simply average user models
here, we will further study the influence of specific model
parameters on the average in the future. The updated cloud
model is denoted as:

f ′S(w) =
1

K

K∑
k=1

fuk
(w), (4)

where w are parameters of the network, K is the number of
users. After adequate rounds of iteration, the updated server
model f ′S has better generalization ability. Subsequently,
new users can take part in the next training round of server
model, thus FedHealth has the capability for incremental
learning.

3.4 Transfer Learning
Federated learning solves the data islanding problem.
Therefore, we can build models using all the user data.
Another important factor is the personalization. Even if we
can directly use the cloud model, it still performs poor on
a particular user. This is due to the distribution difference
between the user and the cloud data. The common model
in the server only learns the coarse features from all users,
while it fails in learning the fine-grained information on a
particular user.

In this paper, FedHealth uses transfer learning to build a
personalized model for each user (organization). Recall that
features in deep neural networks are highly transferable in
the lower levels of the network since they focus on learning
common and low-level features. The higher layers learn
more specific features to the task [15]. In this way, after
obtaining the parameters of the cloud model, we can per-
form transfer learning on the user to learn their personalized
models.

Figure 3 presents the process of transfer learning for a
specific convolutional neural network (CNN). Suppose the
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Fig. 3. The transfer learning process of FedHealth

network is composed of two convolutions layers (conv1,
conv2), two max-pooling layers (pool1, pool2), two
fully connected layers (fc1, fc2), and one softmax layer
for classification. The network is designed for human activ-
ity recognition where the input data is the activity signals
for a user and the output is his/her activity classes.

In model transfer, we think that the convolution layers
aims at extracting low-level features about activity recog-
nition. Thus we keep these layers along with the max-
pooling layers frozen, which means we do not update their
parameters in backpropagation. As for the fully connected
layers fc1 and fc2, since they are higher level, we believe
they focus on learning specific features for the task and user.
Therefore, we update their parameters during training. The
softmax serves as the classification function, which can be
formulated as:

yj =
ezc∑C
c=1 e

zc
, (5)

where zc denotes the learned probability for class C, and yj
is the final classification result.

FedHealth adapts the inputs from different domains by
replacing fc2 with an alignment layer. We regard the pub-
lic datasets as the source domain. Given the network from
the server and user, we add a correlation alignment [16]
layer before the softmax layer to further adapt the domains.
This alignment function is used to align the second-order
statistics between the inputs. Formally, the loss of correla-
tion alignment is computed as follows:

`CORAL =
1

4d2
‖CS − CT ‖2F (6)

where ‖·‖2F denotes the squared matrix Frobenius norm and
d is the dimension of the embedding features. CS and CT

are the covariance matrices of the source and target features
computed by [16]. Let η denote the trade-off parameter. The
cross-entropy loss is calculated with the source and target
data. Therefore, the loss for the user model is computed by:

arg min
Θu

Lu =
n∑

i=1

`(yi, fu(xi))+
nu∑
i=1

`(yui , fu(xu
i ))+η`CORAL,

(7)

3.5 Learning Process
The learning procedure of FedHealth is presented in

Algorithm 1. Note that this framework works continuously
with the new emerging user data. FedHealth can update the
user model and cloud model simultaneously when facing
new user data. Therefore, the longer the user uses the

Algorithm 1 The learning procedure of FedHealth
Input: Data from different users {D1,D2, · · · ,DN}, η
Output: Personalized user model fu

1: Construct an initial cloud model fS with public datasets
using Eq. (2)

2: Distribute fS to all users
3: Train user models using Eq. (3)
4: Update all user models to the server using homomor-

phic encryption. Make models aggregation by using
Eq. (4). Then the server takes this aggregation model
as the updated cloud model f ′S .

5: Distribute f ′S to all users, then perform transfer learning
on each user to get their personalized model fu using
Eq. (7)

6: Repeat the above procedures with the continuously
emerging user data

product, the more personalized the model can be. Other
than transfer learning, other popular methods such as in-
cremental learning can also be embedded in FedHealth for
personalization.

The entire framework can also adopt other machine
learning methods other than deep neural networks. For
instance, the gradient boosting decision tree can be inte-
grated into the framework to harness the power of ensemble
learning. These lightweight models can be deployed to com-
putation restricted wearable devices. This makes FedHealth
more general to real applications.

4 EXPERIMENTS

4.1 Datasets

We adopt a public human activity recognition dataset called
UCI Smartphone [17]. This dataset contains 6 activities
collected from 30 users with smartphones on the waist. 9
channels of accelerometer and gyroscope data is collected at
a constant rate of 50Hz. There are 10,299 instances in total.

In order to construct the problem situation in FedHealth,
we extracted 5 subjects (Subject IDS 26 ∼ 30) and regarded
them as the isolated users which cannot share data due to
privacy security. Data on the remaining 25 users are used
to train the cloud model. Henceforth, the objective is to use
the cloud model and all the 5 isolated subjects to improve
the activity recognition accuracy on the 5 subjects without
compromising the privacy. In short, it is a variant of the
framework in Figure 2 where there are 5 users.

4.2 Implementation Details

On both the server and the user end, we adopt a CNN
for training and prediction. The network is composed of 2
convolutional layers, 2 pooling layers, and 3 fully connected
layers. The network adopts a convolution size of 1 × 9.
It uses mini-batch Stochastic Gradient Descent (SGD) for
optimization. During training, we use 70% of the training
data for model training, while the rest 30% is for model
evaluation. We fix η = 0.01 and K = 5. We set the
learning rate to be 0.01 with batch size of 64 and training
epochs fixed to 80. The accuracy of user u is computed as
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TABLE 1
Classification accuracy (%) of the test subject

Subject KNN SVM RF NoFed FedHealth
P1 83.8 81.9 87.5 94.5 98.8
P2 86.5 96.9 93.3 94.5 98.8
P3 92.2 97.2 88.9 93.4 100.0
P4 83.1 95.9 91.0 95.5 99.4
P5 90.5 98.6 91.6 92.6 100.0

AVG 87.2 94.1 90.5 94.1 99.4
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Fig. 4. Extending FedHealth with other transfer learning methods

Au = |x:x∈Du∧ŷ(x)=y(x)|
|x:x∈Du| , where y(x) and ŷ(x) denote the

true and predicted labels on sample x, respectively.
We follow [7] for homomorphic encryption in feder-

ated learning. During transfer learning, we freeze all the
convolutional and pooling layers in the network. Only the
parameters of the fully connected layers are updated with
SGD. To show the effectiveness of FedHealth, we compare
its performance with traditional deep learning (NoFed),
where we record the performances on each subject using
the initial server model only, and other traditional machine
learning methods. The hyperparameters of all the compari-
son methods are tuned using cross-validation. For the fair
study, we run all the experiments 5 times to record the
average accuracies.

4.3 Classification Accuracy
The activity classification accuracy for each subject is shown
in Table 1. FedHealth achieves the best classification ac-
curacy on all users. Compared to NoFed, it significantly
improves the average results by 5.3%. This is because
federated learning can indirectly utilize more information
from distributed data to train a better model, and through
transfer learning, models become more personalized to the
characteristics of each user. Compared to the traditional
methods (KNN, SVM, and RF), FedHealth also greatly im-
proves the recognition results. In short, it demonstrates the
effectiveness of the FedHealth framework.

The results also show that for activity recognition, the
deep methods (NoFed and FedHealth) achieve better results
than traditional methods. This is due to the representa-
tion capability of deep neural networks, while traditional

methods rely on hand-crafted feature learning. Another
advantage of deep learning is that the models can be up-
dated online and incrementally without retraining, while
traditional methods require further incremental algorithms.
This property is extremely valuable in federated transfer
learning where model reuse is important and helpful.

4.4 Evaluation of Extensibility

In this section, we analyze the extensibility of FedHealth
with different transfer learning approaches. We compare its
performance with two methods: 1) fine-tuning, which only
fine-tunes the network on each subject without explicitly
reducing the distribution divergence between domains; and
2) transfer with MMD (Maximum Mean Discrepancy) [12],
which replaces the alignment loss with MMD loss. The
comparison results are shown in Figure 4.

We can see that other than the alignment loss, FedHealth
can also achieve promising results using fine-tuning or
MMD. The results of transfer learning significantly outper-
form no transfer by 4% on average accuracy. This indicates
that the transfer learning procedure of FedHealth is highly
effective and extensible. Therefore, FedHealth is general and
can be extended in many applications by integrating other
transfer learning algorithms. Moreover, the federated learn-
ing procedure can also be extended using other encryption
methods, which can be the future research.

5 APPLICATION IN AUXILIARY DIAGNOSIS OF
PARKINSON’S DISEASE

Parkinson’s disease usually distinguished with some motor
symptoms thus it is possible to utilize wearable healthcare
methods to help diagnosis [1]. Besides, patient data is a
privacy-sensitive issue that requires federated learning to
address. Thus, we make an application of FedHealth in
the auxiliary diagnosis of Parkinson’s disease, which can
be deployed in hospitals. After the user model is trained
in hospital (user side), patients can download it into their
smartphones and update in the next visit. They can make
self-test and get real-time feedback to acquire disease status
conveniently.

5.1 Parkinson’s Disease Dataset

We developed a smartphone application to collect patients’
acceleration and gyroscope signals in the symptom tests at
rate of 50Hz. Five symptom tests including Arm Droop,
Balance, Gait, Postural Tremor and Resting Tremor are pro-
vided in series. For each test, symptoms can be ranked into
five levels from normal to severe. The detailed description
and the interfaces of these tests are shown in Figure 5.
During the collection process, a Parkinson’s disease thera-
pist is around to rate the symptoms. We collected sensor
data with more than 130 patients age from 19 to 87 years
old participated. In the following evaluation, we carried
experiments on test data of Arm Droop and Postural Tremor
from where two classes with relatively adequate data are
selected.

Authorized licensed use limited to: MICROSOFT. Downloaded on April 24,2020 at 01:28:49 UTC from IEEE Xplore.  Restrictions apply. 



1541-1672 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIS.2020.2988604, IEEE Intelligent
Systems

IEEE INTELLIGENT SYSTEMS, VOL. XX, NO. X, 2019 6

Fig. 5. Main interfaces of symptom tests in smartphone application

TABLE 2
Classification accuracy (%) and mean-F1 (shown in the bracket) of

each subject in Arm Droop and Postural Tremor test

Arm Droop test
Subject KNN SVM RF NoFed FedHealth Upper Bound

P1 36.0 (0.32) 40.4 (0.38) 44.9 (0.41) 49.4 (0.49) 75.0 (0.75) 88.6 (0.88)
P2 64.0 (0.64) 61.8 (0.62) 57.3 (0.47) 68.5 (0.68) 93.2 (0.93) 100.0 (1.00)
P3 85.7 (0.86) 72.5 (0.72) 67.0 (0.64) 70.3 (0.70) 84.8 (0.84) 89.1 (0.89)

AVG 61.9 (0.61) 58.2 (0.57) 56.4 (0.51) 62.7 (0.62) 84.3 (0.84) 92.6 (0.92)
Postural Tremor test

Subject KNN SVM RF NoFed FedHealth Upper Bound
P1 50.4 (0.44) 47.4 (0.37) 59.0 (0.58) 47.5 (0.41) 85.3 (0.81) 87.0 (0.86)
P2 59.5 (0.58) 58.3 (0.58) 51.8 (0.52) 61.2 (0.61) 70.9 (0.67) 87.3 (0.86)
P3 64.3 (0.64) 52.3 (0.50) 51.1 (0.51) 58.0 (0.58) 68.4 (0.68) 75.1 (0.75)

AVG 58.1 (0.55) 52.7 (0.48) 54.0 (0.54) 55.6 (0.53) 74.9 (0.72) 83.1 (0.82)

5.2 Classification Performance
We evaluate the classification accuracy and macro F1 score
on the collected dataset. Data is collected from three hospi-
tals, we randomly selectly 70% from each hospital as public
dataset, and 30% as three users and we fixed K = 3.
Comparison results are shown in Table 2. Also, we provide
the results of ideal scenario with the proposed approach
but where all data been stored in one location to see the
upper bound of the model performance. From the results
we can see that FedHealth achieves the best classification
accuracy which significantly outperforms the best compar-
ison method by 21.6% and 16.6% in two datasets and the
best mean-F1 score on all users, and it narrows the gap with
the ideal situation. This indicates that through federated
transfer learning FedHealth can achieve effective symptom
classification in the real application.

5.3 Extensibility with Alternative Transfer Learning
Methods
Consistent with the experiment settings in Section 4.4, ex-
tensibility results on Arm Droop and Postural Tremor test
data are shown in Figure 6 (a) and (b). We can see that
FedHealth can achieve satisfying results with fine-tune or
MMD in most cases, this indicates that FedHealth is effective
and extensible with other transfer learning algorithms in the
real application.

5.4 Ablation Study
We further provide the ablation study to evaluate the two
main components of federated learning and transfer learn-
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Fig. 6. Extensibility with alternative transfer learning methods and abla-
tion study on Parkinson’s disease data

ing. We use Fed to denote the averaged model without
personalized transfer learning. Results are shown in Figure 6
(c) and (d). Results show that both federated learning and
transfer learning make important contributions to the per-
formance of FedHealth. Comparing Fed with NoFed, we can
see model with federated settings can improve the classifica-
tion accuracy, which indicate the effectiveness of federated
learning. Further comparing Fed with the proposed feder-
ated transfer learning framework FedHealth, we can see
that combined with transfer learning, each user model can
achieve better performance on classification. This is because:
1) with federated learning, the server can take advantage
of more information from multiple users indirectly to get
a more generalized cloud model; 2) with transfer learning,
users can utilize the cloud model to get a more personalized
user model.

6 DISCUSSIONS

In this section, we discuss its potential to be extended and
deployed to other situations with possible solutions.

1. FedHealth with incremental learning. Incremental
learning has the ability to update the model with the grad-
ually changing time, environment, and users. In contrast to
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transfer learning that focuses on model adaptation, incre-
mental learning makes it possible to update the model in
real-time without much computation when new user data
arrive.

2. FedHealth to be applied in more applications. This
work mainly focuses on the possibility of federated transfer
learning in healthcare via activity recognition and Parkin-
son’s disease auxiliary diagnosis. In more real situations,
FedHealth can be deployed to more healthcare applications
such as elderly care, fall detection, cognitive disease detec-
tion, etc. We hope that through FedHealth, federated learn-
ing can become federated computing which can become a
new computing model in the future.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we propose FedHealth, the first federated
transfer learning framework for wearable healthcare. Fed-
Health aggregates the data from different organizations
without compromising privacy security and achieves rel-
atively personalized model learning through knowledge
transfer. Experiments and applications have evaluated the
effectiveness of the framework. We also present a detailed
discussion for its potential from specific technical improve-
ments to healthcare applications. FedHealth opens a new
door for future research in wearable healthcare. In the fu-
ture, we plan to extend FedHealth with incremental learning
to achieve more personalized and flexible healthcare.
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