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Abstract— Deep unsupervised domain adaptation (UDA) has
recently received increasing attention from researchers. How-
ever, existing methods are computationally intensive due to
the computation cost of Convolutional Neural Networks (CNN)
adopted by most work. To date, there is no effective network
compression method for accelerating these models. In this paper,
we propose a unified Transfer Channel Pruning (TCP) approach
for accelerating UDA models. TCP is capable of compressing the
deep UDA model by pruning less important channels while simul-
taneously learning transferable features by reducing the cross-
domain distribution divergence. Therefore, it reduces the impact
of negative transfer and maintains competitive performance on
the target task. To the best of our knowledge, TCP is the first
approach that aims at accelerating deep UDA models. TCP is
validated on two benchmark datasets Office-31 and ImageCLEF-
DA with two common backbone networks VGG16 and ResNet50.
Experimental results demonstrate that TCP achieves comparable
or better classification accuracy than other comparison methods
while significantly reducing the computational cost. To be more
specific, in VGG16, we get even higher accuracy after pruning
26% floating point operations (FLOPs); in ResNet50, we also get
higher accuracy on half of the tasks after pruning 12% FLOPs.
We hope that TCP will open a new door for future research on
accelerating transfer learning models.

I. INTRODUCTION

Deep neural networks have significantly improved the per-
formance of diverse machine learning applications. However,
in order to avoid overfitting and achieve better performance, a
large amount of labeled data is needed to train a deep network.
Since the manual labeling of massive training data is usually
expensive in terms of money and time, it is urgent to develop
effective algorithms to reduce the labeling workload on the
domain to be learned (i.e. target domain).

A popular solution to solve the above problem is called
transfer learning, or domain adaptation [1], which tries to
transfer knowledge from well-labeled domains (i.e. source
domains) to the target domain. Specifically, Unsupervised
Domain Adaptation (UDA) is considered more challenging
since the target domain has no labels. The key is to learn
a discriminative model to reduce the distribution divergence
between domains. In recent years, deep domain adaptation
methods have produced competitive performance in various
tasks [2], [3], [4]. This is because that they take advantages
of CNN to learn more transferable representations [2], [3]
compared to traditional methods. Popular CNN architectures
such as AlexNet [5], VGGNet [6], and ResNet [7] are widely

adopted as the backbone networks for deep unsupervised do-
main adaptation methods. Then, knowledge can be transferred
to the target domain by reducing the cross-domain distance
such as Maximum Mean Discrepancy (MMD) [8] or KL
divergence [9].

Unfortunately, it is still challenging to deploy these deep
UDA models on resource constrained devices such as mobile
phones since there is a huge computational cost required
by these methods. In order to reduce resource requirement
and accelerate the inference process, a common solution is
network compression. Network compression methods mainly
include network quantization [10], [11], weight pruning [12],
[13], [14], and low-rank approximation [15], [16]. Especially
channel pruning [13], [14], [17], which is a type of weight
pruning and compared to other methods, it does not need spe-
cial hardware or software implementations. And it can reduce
negative transfer [1] by pruning some redundant channels, in
which, negative transfer refers to the knowledge learned on
the source domain that has a negative effect on the learning
on the target domain. So it is a good choice for compressing
deep UDA models.

However, it is not feasible to apply the above network
compression methods directly to the UDA problems. The
reasons are two folds. Firstly, these compression methods are
proposed to solve supervised learning problems, which is not
suitable for the UDA settings since there are no labels in the
target domain. Secondly, even if we can acquire some labels
manually, applying these compression methods directly to
UDA will result in negative transfer, since they fail to consider
the distribution discrepancy between the source and target
domains. Currently, there is no effective network compression
method for UDA.

In this paper, we propose a unified network compression
method called Transfer Channel Pruning (TCP) for ac-
celerating deep unsupervised domain adaptation models. The
general framework of our method TCP is shown in Fig. 1.
Starting from a deep unsupervised domain adaptation base
model, TCP iteratively evaluates the importance of channels
with the transfer channel evaluation module and remove less
important channels for both source and target domains. TCP is
capable of compressing the deep UDA model by pruning less
important channels while simultaneously learning transferable
features by reducing the cross-domain distribution divergence.
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Fig. 1. The framework of the proposed Transfer Channel Pruning (TCP) approach.

Experimental results demonstrate that TCP achieves better
classification accuracy than other comparison pruning methods
while significantly reducing the computational cost. To the best
of our knowledge, TCP is the first approach to accelerate the
deep UDA models.

To summarize, the contributions of this paper are as follows:
1) We present TCP as a unified approach for accelerat-

ing deep unsupervised domain adaptation models. TCP is a
generic, accurate, and efficient compression method that can
be easily implemented by most deep learning libraries.

2) TCP is able to reduce negative transfer by considering
the cross-domain distribution discrepancy using the proposed
Transfer Channel Evaluation module.

3) Extensive experiments on two public UDA datasets
demonstrate the significant superiority of our TCP method.

II. RELATED WORK

Our work is mainly related to unsupervised domain adap-
tation and network compression.

A. Unsupervised Domain Adaptation

UDA is a specific area of transfer learning [1], which is to
learn a discriminative model in the presence of the domain-
shifts between domains. The main problem of UDA is how
to reduce the domain shift between the source and target
domains. There are many methods to tackle this problem:
traditional (shallow) learning and deep learning.

Traditional (shallow) learning methods have several aspects:
1) Subspace learning. Subspace Alignment (SA) [18] aligns
the base vectors of both domains and Subspace Distribution
Alignment (SDA) [19] extends SA by adding the subspace
variance adaptation. CORAL [20] aligns subspaces in second-
order statistics. 2) Distribution alignment. Joint Distribution
Adaptation (JDA) [21] is proposed to match both distributions
with equal weights. Later works extend JDA by adding struc-
tural consistency [22] and domain invariant clustering [23].
But these works treat the two distributions equally and fail
to leverage the different importance of distributions. Recently,
Wang et al. proposed the Manifold Embedded Distribution
Alignment (MEDA) [24], [25] approach to dynamically evalu-
ate the different effect of marginal and conditional distributions
and achieved the state-of-the-art results on domain adaptation.

As for deep learning methods, CNN can learn nonlinear
deep representations and capture underlying factors of varia-
tion between different tasks [26]. These deep representations
can disentangle the factors of variation, which enables the
transfer of knowledge between tasks [27]. Recent works on
deep UDA embed domain-adaptation modules into deep net-
works to improve transfer performance [28], [29], [30], [31],
where significant performance gains have been obtained. UDA
has wide applications in computer vision [3], [32] and natural
language processing [2] and is receiving increasing attention
from researchers.

As far as we know, no previous UDA approach has focused
on the acceleration of the network.

B. Network Compression
These years, for better accuracy, designing deeper and wider

CNN models has become a general trend, such as VGGNet
[6] and ResNet [7]. However, as the CNN grow bigger, it is
harder to deploy these deep models on resource constrained
devices. Network compression becomes an efficient way to
solve this problem. Network compression methods mainly
include network quantization, low-rank approximation and
weight pruning. Network quantization is good at decreasing
the presentation precision of parameters so as to reduce the
storage space. Low-rank approximation reduces the storage
space by low-rank matrix techniques, which is not efficient
for point-wise convolution [33]. Weight pruning mainly in-
cludes two methods, neural pruning [12], [34] and channel
pruning [13], [14], [17], [35].

Channel pruning methods prune the whole channel each
time, so it is fast and efficient than neural pruning which
removes a single neuron connection each time. It is a struc-
tured pruning method, compared to network quantization and
low-rank approximation, it does not introduce sparsity to the
original network structure and also does not require special
software or hardware implementations. It has demonstrated
superior performance compared to other methods and many
works [13], [14], [35] have been proposed to perform channel
pruning on pre-trained models with different kinds of criteria.

These above pruning methods mainly aim at supervised
learning problems, by contrast, there have been few studies
for compressing unsupervised domain adaptation models. As
far as we know, we are the first to study how to do channel
pruning for deep unsupervised domain adaptation.



TCP is primarily motivated by [14], while our work is
different from it. TCP is presented for pruning unsupervised
domain adaptation models. To be more specific, we take
the discrepancy between the source and target domains into
consideration so we can prune the less important channels not
just for the source domain but also for the unlabeled target
domain. We call this Transfer Channel Evaluation, which is
highlighted in yellow in Fig. 1.

III. TRANSFER CHANNEL PRUNING

In this section, we introduce the proposed Transfer Channel
Pruning (TCP) approach.

A. Problem Definition

In unsupervised domain adaptation, we are given a source
domain Ds = {(xs

i , y
s
i )}ns

i=1 of ns labeled examples and a
target domain Dt = {xt

j}
nt
j=1 of nt unlabeled examples. Ds

and Dt have the same label space, i.e. xi,xj ∈ Rd where
d is the dimensionality. The marginal distributions between
two domains are different, i.e. Ps(xs) 6= Pt(xt). The goal of
deep UDA is to design a deep neural network that enables
learning of transfer classifiers y = fs(x) and y = ft(x) to
close the source-target discrepancy and can achieve the best
performance on the target dataset.

For a pre-trained deep UDA model, its parameters can be
denoted as W. Here we assume the lth convolutional layer has
an output activation tensor al of size of hl × wl × kl, where
kl represents the number of output channels of the lth layer,
and hl and wl stand for the height and width of feature maps
of the lth layer, respectively. Therefore, the goal of TCP is to
prune a UDA model in order to accelerate it with comparable
or even better performance on the target domain. In this way,
we can obtain smaller models that require less computation
complexity and memory consumption, which can be deployed
on resource constrained devices.

B. Motivation

We compress the deep UDA model using model pruning
methods for their efficiency. A straightforward model pruning
technique is a two-stage method, which first prunes the model
on the source domain with supervised learning and then fine-
tunes the model on the target domain. However, negative
transfer [1] is likely to happen during this pruning process
since the discrepancy between the source and target domains
is ignored.

In this work, we propose a unified Transfer Channel
Pruning (TCP) approach to tackle such challenge. TCP is
capable of compressing the deep UDA model by pruning less
important channels while simultaneously learning transferable
features by reducing the cross-domain distribution divergence.
Therefore, TCP reduces the impact of negative transfer and
maintains competitive performance on the target task. In short,
TCP is a generic, accurate, and efficient compression method
that can be easily implemented by most deep learning libraries.

To be more specific, Fig. 1 illustrates the main idea of TCP.
There are mainly three steps. Firstly, TCP learns the base
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Fig. 2. The basic deep UDA architecture.

deep UDA model through Base Model Building. The base
model is fine-tuned with the standard UDA criteria. Secondly,
TCP evaluates the importance of channels of all layers with
the Transfer Channel Evaluation and performs further fine-
tuning. Specifically, the convolutional layers, which usually
dominate the computation complexity, are pruned in this step.
Thirdly, TCP iteratively refines the pruning results and stops
after reaching the trade-off between accuracy and FLOPs (i.e.
computational cost) or parameter size.

C. Base Model Building

In this step, we build the base UDA model with deep neural
networks. Deep neural networks have been successfully used
in UDA with state-of-the-art algorithms [30], [3], [31] in recent
years. Previous studies [36], [31] have shown that the features
extracted by deep networks are general at lower layers, while
specific at the higher layers since they are more task-specific.
Therefore, more transferable representations can be learned
by transferring the features at lower layers and then fine-tune
the task-specific layers. During fine-tuning, the cross-domain
discrepancy can be reduced by certain adaptation distance.
Since our main contribution is not designing new deep UDA
networks, we adopt DAN [3] as the base architecture. DAN
is a popular deep UDA approach and its variants have been
widely adopted for UDA tasks. In the following, we will
briefly introduce the main idea of DAN, and more details can
be found in its original paper.

As shown in Fig. 2, we learn transferable features via several
convolutional and pooling layers (the blue and purple blocks).
Then, the classification task can be accomplished with the
fully-connected layers (the yellow blocks). Maximum Mean
Discrepancy (MMD) [9] is adopted as the adaptation loss
in order to reduce domain shift. MMD has been proposed
to provide the distribution difference between the source and
target datasets. And it has been widely utilized in many UDA
methods [3], [37], [31]. The MMD loss between two domains
can be computed as

Lmmd =

∥∥∥∥ 1
ns

∑
xi∈Ds

φ(xi)− 1
nt

∑
xj∈Dt

φ(xj)
∥∥∥∥2
H
, (1)

where H denotes Reproducing Kernel Hilbert Space (RKHS)
with gaussian kernel and φ(·) denotes some feature map to
map the original samples to RKHS.



Several popular architectures can serve as the backbone
network of DAN, such as AlexNet [5], VGGNet [6], and
ResNet [7]. After obtaining the base model, we can perform
channel pruning to accelerate the model.

D. Transfer Channel Evaluation

The goal of transfer channel evaluation is to iteratively
evaluate the importance of output channels of layers in order
to prune the K least important channels. Here K is controlled
by users. In the pruning process, we want to preserve and
refine a set of parameters W′, which represents those im-
portant parameters for both source and target domains. Let
L(Ds,Dt,W) be the cost function for UDA and W′ = W
at the starting time. For a better set of parameters W′, we
want to minimize the loss change after pruning a channel al,i.
This can be considered as an optimization problem. Here we
introduce the absolute difference of loss:

|∆L(al,i)| = |L(Ds,Dt,al,i)− L(Ds,Dt,al,i = 0)|, (2)

which means the loss change after pruning the ith channel
of the lth convolutional layer. And we want to minimize
|∆L(al,i)| by selecting the appropriate channel al,i. Pruning
will stop until a trade-off between accuracy and pruning object
(FLOPs or parameter size) has been achieved.

However, it is hard to find a set of optimal parameters in
one go, because the search space is 2|W| which is too huge
to compute and try every combination. Inspired by [14], our
TCP solves this problem with a greedy algorithm by iteratively
removing the K least important channels at each time.

1) Criteria: Criteria is the criterion for judging the impor-
tance of channels. Since the key to channel pruning is to select
the least important channel, especially for UDA, we design
the criteria of TCP carefully. There are many heuristic criteria,
including the L2-norm of filter weights, the activation statistics
of feature maps, mutual information between activations and
predictions and Taylor expansion, etc. Here we choose the
first-order Taylor expansion as the base criteria since its
efficiency and performance has been verified in [14] for
pruning supervised learning models. Compared with our TCP,
we also take pruning as an optimization problem, however,
the objective we want to optimize is the final performance on
the unlabeled target dataset. So we design our criteria in a
different way which is better for pruning deep UDA models.

According to Taylor’s theorem, the Taylor expansion at
point x = a can be computed as:

f(x) =

P∑
p=0

f (p)(a)

p!
(x− a)p +Rp(x), (3)

where p denotes the pth derivative of f(x) at point x = a
and the last item Rp(x) represents the pth remainder. To
approximate |∆L(al,i)|, we can use the first-order Taylor
expansion near al,i = 0 which means the loss change after
removing al,i, then we can get:

f(al,i = 0) = f(al,i)− f ′(al,i) · al,i +
|al,i|2

2
· f ′′(ξ), (4)

where ξ is a value between 0 and al,i, and |al,i|2
2 · f ′′(ξ) is

a Lagrange form remainder which requires too much compu-
tation, so we abandon this item for accelerating the pruning
process. Then back to Eq. (2), we can get:

L(Ds,Dt,al,i = 0) = L(Ds,Dt,al,i)−
∂L

∂al,i
· al,i. (5)

Then, we combine Eq. (2) and Eq. (5) and get the criteria
G of TCP:

G(al,i) = |∆L(al,i)| = |
∂L

∂al,i
· al,i|, (6)

which means the absolute value of product of the activation
and the gradient of the cost function, and al,i can be calculated
as:

al,i =
1

N

N∑
n=1

1

hl × wl

hl∑
p=1

wl∑
q=1

ap,ql,i , (7)

where N is the number of batch size and ap,ql,i is the value of
the pth row and the qth column of the activated feature map
al,i.

2) Loss Function of TCP: To make TCP focus on pruning
UDA models, we simultaneously take the source domain
and the unlabeled target domain into consideration. The loss
function of TCP consists of two parts, Lcls(Ds,W) and
Lmmd(Ds,Dt,W). Here, Lcls(Ds,W) is a cross-entropy loss
which denotes the classification loss on source domain and can
be computed as:

Lcls(Ds,W) = − 1

N

N∑
i=1

C∑
c=1

Pi,clog(hc(xsi )) (8)

where C is the number of classes of source dataset, Pi,c is the
probability of xsi belonging to class c, and hc(xsi ) denotes
the probability that the model predicts xsi as class c. And
Lmmd(Ds,Dt,W) denotes the MMD loss between the source
and target domains that presented in Eq. (1). The total loss
function can be computed as:

L(Ds,Dt,W) = Lcls(Ds,W) +

βLmmd(Ds,Dt,W),
(9)

where
β =

4

1 + e−1·
i

ITER

− 2. (10)

Here, β is a dynamic value which takes values in (0, 1). i ∈
(0, ITER) where ITER is the number of pruning iterations.
We design β in this way for two main reasons, on the one
hand, during the early stage of pruning, the weights have not
converged and keep unstable so the Lmmd is too large and
makes the pruned model hard to converge. On the other hand,
in the rest of the pruning process, the Lmmd becomes more
important that can guide the pruned model to focus more on
the target domain. So the criteria of TCP can be computed as:

G(al,i) = |∂Lcls(Ds,W)

∂asl,i
· asl,i +

β
∂Lmmd(Ds,Dt,W)

∂atl,i
· atl,i|,

(11)



Algorithm 1 TCP: Transfer Channel Pruning
Input: Source domain Ds = {(xs

i , y
s
i )}ns

i=1, target domain
Dt = {xt

j}
nt
j=1, the baseline W.

Output: A pruned model W′ for deep unsupervised domain
adaptation.

1: Fine-tune the unsupervised domain adaptation baseline
until the best performance achieved on the unlabeled target
dataset;

2: for iteration i do
3: Sort the importance of channels by criteria Eq. (11) and

identify less significant channels;
4: Remove the K least important channels of the layers;
5: Short-term fine-tune;
6: if the trade-off between accuracy on the target domain

and FLOPs or parameter size has achieved then
7: break
8: end if
9: end for

10: Long-term fine-tune;
11: return pruned model W′.

where asl,i and atl,i denote the activation with source data and
target data respectively.

E. Iterative Refinement

After the transfer channel evaluation, each channel is sorted
according to Eq. (11) and the K least important channels are
removed after each pruning iteration. Then, a short-term fine-
tuning is adopted to the pruned model to help the model to
converge and the pruning is done after a trade-off between
accuracy and FLOPs or parameter size has been achieved. In
which, the trade-off means both the computational complexity
of the model and accuracy on the target domain are all
acceptable. And since the target domain has no labels, so
in practice, a small target domain test dataset is built by
acquiring some labels manually. The learning procedure of
TCP is described in Algorithm 1.

IV. EXPERIMENTAL ANALYSIS

In this section, we evaluate the performance of TCP via
experiments on pruning deep unsupervised domain adaptation
models. We evaluate our approaches for VGGNet [6] and
ResNet [7] on two popular datasets Office-31 [38] and
ImageCLEF-DA 1. All our methods are implemented based
on the PyTorch [39] framework and the code will be released
at github.com/jindongwang/transferlearning/code/deep/TCP.

A. Datasets

1) Office-31: This dataset is a standard and maybe the
most popular benchmark for unsupervised domain adaptation.
It consists of 4,110 images within 31 categories collected from
everyday objects in an office environment. It consists of three
domains: Amazon (A), which contains images downloaded

1http://imageclef.org/2014/adaptation
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Fig. 3. A sample of the two benchmark datasets. Left: the Office-31 dataset;
Right: the ImageCLEF-DA dataset.

from amazon.com, Webcam (W) and DSLR (D), which
contain images respectively taken by web camera and digital
SLR camera under different settings. A sample of the Office-
31 dataset is shown in the left part of Fig. 3. We evaluate all
our methods across six transfer tasks on all the three domains
A→W, W→A, A→D, D→A, D→W and W→D.

2) ImageCLEF-DA: This dataset is a benchmark dataset
for ImageCLEF 2014 domain adaptation challenge, and it is
collected by selecting the 12 common categories shared by the
following public datasets and each of them is considered as a
domain: Caltech− 256 (C), ImageNet ILSV RC 2012 (I),
Pascal V OC 2012 (P) and Bing (B). There are 50 images in
each category and 600 images in each domain. A sample of the
ImageCLEF-DA dataset is shown in the right part of Fig. 3.
We evaluate all methods across six transfer tasks following [3]:
I→P, P→I, I→C, C→I, P→C and C→P. Compared with
Office-31, this dataset is more balanced and can be a good
comparable dataset to Office-31.

B. Implementation Details

We mainly compare three methods: 1) Two stage: which is
the most straightforward method that applies channel pruning
to the source domain task first, then fine-tune for the target
domain task with the pruned model. 2) TCP w/o DA: Our
TCP method without the MMD loss, here we call it domain
adaptation (DA) loss. Which also means β = 0 all the time in
Eq. (9). 3) TCP: Our full TCP method with DA loss.

We evaluate all the methods on two popular backbone net-
works: VGG16 [6] and ResNet50 [7]. As baselines, VGG16-
based and ResNet50-based are the original models that are not
pruned. As for VGG16-based model, it has 13 convolutional
layers and 3 fully-connected layers. We prune all the con-
volutional layers and the first fully-connected layer and we
only use the activations of the second fully-connected layer
as image representation and build the MMD loss which is
shown in Fig. 2. And as for ResNet50-based model, we use
similar settings as VGG16-based model with a few differences.
Because of the shortcut and residual branch structure, we only
prune the inside convolutional layers of each bottleneck block.
The MMD loss is built with the only fully-connected layer.
Moreover, we also take the Batch Normalization (BN) [40]
layers into consideration and reconstruct the whole model
during pruning.

github.com/jindongwang/transferlearning/code/deep/TCP
http://imageclef.org/2014/adaptation
amazon.com


TABLE I
The performance on Office-31 dataset (VGG16-based and ResNet50-based). Here, FLOPs ↓ and Param ↓ denote the decrement of FLOPs and parameter

size compared with the baseline, Acc means the accuracy on target domain.

Models FLOPs↓ A→W D→W W→D A→D D→A W→A Average
Acc Param↓ Acc Param↓ Acc Param↓ Acc Param↓ Acc Param↓ Acc Param↓ Acc Param↓

VGG16-base 74.0% 94.0% 97.5% 72.3% 54.1% 55.2% 74.5%
Two stage

26%
69.4% 29.4% 94.5% 31.2% 99.0% 30.6% 69.8% 29.3% 42.7% 32.5% 47.2% 28.3% 70.4% 30.2%

TCP w/o DA 73.0% 29.7% 95.5% 32.7% 99.3% 29.2% 75.8% 25.8% 45.9% 29.3% 50.4% 29.6% 73.3% 29.4%
TCP 76.1% 36.8% 96.1% 36.2% 99.8% 32.6% 76.2% 35.9% 47.9% 37.1% 51.2% 39.8% 74.5% 36.4%

Two stage
70%

57.1% 63.3% 88.1% 68.0% 96.3% 64.5% 55.0% 61.0% 31.8% 66.2% 32.7% 63.1% 60.2% 64.3%
TCP w/o DA 53.5% 62.5% 89.2% 61.3% 97.9% 57.5% 61.8% 54.8% 35.3% 62.6% 34.5% 58.8% 62.0% 59.6%

TCP 74.1% 69.3% 89.5% 69.8% 98.8% 65.2% 65.9% 66.2% 35.6% 68.5% 38.5% 68.2% 67.1% 67.9%
ResNet50-base 80.3% 97.1% 99.2% 78.9% 64.3% 62.3% 80.3%

Two stage
12%

75.8% 32.4% 96.7% 31.4% 99.5% 35.5% 76.0% 30.4% 48.0% 28.3% 50.1% 29.4% 74.4% 31.2%
TCP w/o DA 79.8% 33.5% 97.0% 35.5% 100% 34.5% 77.1% 36.2% 47.8% 34.5% 52.6% 33.1% 75.7% 34.5%

TCP 81.8% 37.7% 98.2% 36.2% 99.8% 37.0% 77.9% 36.9% 50.0% 35.0% 55.5% 36.9% 77.2% 36.7%
Two stage

46%
65.5% 56.2% 93.0% 56.3% 98.7% 57.3% 64.9% 56.0% 34.0% 57.2% 38.9% 57.3% 65.8% 56.7%

TCP w/o DA 75.1% 56.4% 95.8% 56.4% 99.2% 56.6% 70.8% 55.8% 34.2% 56.4% 41.5% 56.6% 69.4% 56.4%
TCP 77.4% 58.4% 96.3% 58.0% 100% 57.1% 72.0% 59.0% 36.1% 57.8% 46.3% 58.5% 71.3% 58.1%

TABLE II
The performance on ImageCLEF-DA dataset (VGG16-based and ResNet50-based).

Models FLOPs↓ I→P P→I I→C C→I C→P P→C Average
Acc Param↓ Acc Param↓ Acc Param↓ Acc Param↓ Acc Param↓ Acc Param↓ Acc Param↓

VGG16-base 71.3% 80.0% 88.5% 77.0% 61.1% 87.2% 77.5%
Two stage

26%
68.0% 29.0% 77.7% 29.9% 88.5% 27.5% 64.5% 29.0% 56.0% 29.3% 83.3% 26.9% 73.0% 28.6%

TCP w/o DA 70.5% 33.6% 79.5% 34.2% 89.0% 33.1% 77.1% 34.5% 62.2% 35.0% 85.1% 33.1% 77.2% 33.9%
TCP 72.0% 39.0% 80.5% 32.2% 90.5% 35.1% 77.8% 36.3% 64.8% 36.6% 87.5% 34.5% 78.9% 35.6%

Two stage
70%

58.6% 65.8% 69.2% 62.9% 80.6% 64.3% 57.7% 57.0% 43.2% 67.8% 74.5% 61.5% 63.9% 63.2%
TCP w/o DA 61.0% 55.4% 69.1% 65.7% 80.5% 66.5% 55.1% 63.3% 47.0% 66.5% 70.9% 65.8% 63.9% 63.9%

TCP 61.9% 66.7% 69.5% 66.0% 81.8% 65.7% 59.8% 68.7% 49.7% 68.8% 75.9% 67.2% 66.4% 67.1%
ResNet50-base 74.8% 82.2% 92.3% 83.3% 70.0% 89.8% 82.1%

Two stage
12%

71.8% 29.4% 81.3% 31.5% 92.1% 34.4% 76.5% 32.4% 64.0% 29.2% 84.0% 30.8% 78.2% 31.2%
TCP w/o DA 73.0% 33.5% 80.5% 34.6% 92.0% 33.8% 76.1% 31.2% 64.3% 30.1% 86.3% 36.3% 78.7% 33.2%

TCP 75.0% 37.5% 82.6% 36.5% 92.5% 35.5% 80.8% 36.7% 66.2% 36.6% 86.5% 37.6% 80.6% 36.7%
Two stage

46%
65.6% 53.2% 71.8% 56.5% 85.2% 54.2% 68.2% 54.0% 57.4% 51.5% 78.1% 54.0% 71.1% 53.9%

TCP w/o DA 66.6% 55.4% 73.0% 57.4% 85.5% 55.4% 67.7% 55.5% 55.5% 53.6% 77.0% 57.1% 70.8% 55.7%
TCP 67.8% 57.2% 77.5% 58.0% 88.6% 56.2% 71.6% 58.5% 57.7% 55.7% 79.5% 58.2% 73.8% 57.3%

In practice, all the input images are cropped to a fixed
size 224× 224 and randomly sampled from the resized image
with horizontal flip and mean-std normalization. At first, we
fine-tune all the UDA models on each unsupervised domain
adaptation tasks for 200 epochs with learning rate from 0.01
to 0.0001 and the batch size = 32. During pruning, we set
K = 64 which means 64 channels will be removed after each
pruning iteration. After that, extra 5 epochs are adopted to
help the pruned model to converge. And we follow [41] to
prune the baseline with different compression rate and make
the compression rate as different as possible. The VGG16-
based baseline is pruned with 26% and 70% FLOPs reduced
while the ResNet50-based baseline is pruned with 12% and
46% FLOPs reduced. ResNet50 has lower compression rate
since the bottleneck structure stops some layers from being
pruned.

We follow standard evaluation protocol for UDA and use all
source examples with labels and all target examples without
labels [42]. The labels for the target domain are only used for
evaluation. We adopt classification accuracy on the target do-
main and parameter reduction as the evaluation metrics: higher
accuracy and fewer parameters indicate better performance.

C. Results and Analysis

Firstly, we evaluate all the tasks on Office-31 dataset. The
results are shown in TABLE I. As can be seen, our TCP

method outperforms other methods under the same compres-
sion rate (FLOPs reduction) and can reduce more parameters.
And the FLOPs in convolutional layers is calculated by:

FLOPs = HWCinK
2Cout, (12)

where H,W,Cout is the height, width and channel number
of output feature map, K is the kernel size, Cin refers to
the number of input channels, and the bias item is ignored
due to its small contribution. Moreover, It is important and
interesting that TCP achieves even better performance than the
baseline model (which is not pruned). This is probably because
some redundant channels in the base model are removed
thus negative transfer is reduced. Especially for the results of
ResNet50-based models, our baseline is almost the same as the
result of DAN in [3]. However, we can get better performance
on half of the tasks and we even get 100% on task W→D
after 46% FLOPs have been reduced.

Secondly, we evaluate our methods on ImageCLEF-DA
dataset and the results are shown in TABLE II. We can
draw the same conclusion that TCP performs better on all
tasks on ImageCLEF-DA dataset. We get higher accuracy than
the baseline on all the VGG16-based experiments after 26%
FLOPs have been reduced, and we also get higher accuracy
on the target dataset on half of the tasks on ResNet50-based
experiments after 12% FLOPs have been reduced, compared
with the baseline which is almost the same as DAN [3].
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Fig. 4. The pruning result on task A→W with more compression rate.
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(b) Two stage: Target = W
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(c) TCP w/o DA: Target = W
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(d) TCP: Target = W
Fig. 5. The t-SNE visualization of network activations. (a) is generated
by ResNet50-based baseline without pruning on source domain. (b)(c)(d)
are generated by ResNet50-based (with 12% FLOPs pruned) with our three
methods on target domain respectively. Best view in color.

Apart from TABLE I and TABLE II, Fig. 4 shows the
comparison for all methods. And we also add a Random
method which randomly removes a certain number of channels
to achieve the same reduction of FLOPs. Combining these
results, more conclusions can be made. 1) Compared with
Two stage, TCP is more efficient because it is a unified
framework and treat the pruning as a single optimization
problem, while Two stage is a split method and it does not
take the target domain into consideration while pruning. 2)
Compared with TCP w/o DA, the full TCP uses the transfer
channel evaluation to represent the discrepancy between the
source and target domains. We try to remove those less im-
portant channels for both source and target domains and reduce
negative transfer by reducing domain discrepancy. 3) As can
be seen from Fig. 4, our TCP outperforms other methods on
unlabeled target dataset under different compression rate. 4)
This indicates that TCP is generic, accurate, and efficient,
which can dramatically reduce the computational cost of a
deep UDA model without sacrificing the performance.
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(b) ImageCLEF-DA: I→P
Fig. 6. The pruned structure of all the 13 convolutional layers of VGG16-
based network on different dataset for deep unsupervised domain adaptation.
Best view in color.

D. Effectiveness Analysis

Visualization analysis. To evaluate the effectiveness of TCP
in reducing negative transfer, in Fig. 5, we follow [43] to
visualize the model activations of task A→W pruned by
different methods using t-SNE [43]. Fig. 5(a) shows the results
of ResNet50-based baseline without pruning on the source
domain. And Fig. 5(b), Fig. 5(c) and Fig. 5(d) denote the
result of ResNet50-based models on the target domain, which
have been pruned by 12% FLOPs with our three methods
Two stage, TCP w/o DA and TCP respectively. The colored
digits represent the ground truth of the examples, so the
number is from 0 to 30, which denotes target dataset has 31
categories. Here we randomly pick 10 categories to visualize.
As can be seen, the target categories are discriminated more
clearly with the model pruned by our TCP method. This
suggests that our TCP method is effective in learning more
transferable features by reducing the cross-domain divergence.

Pruned structure analysis. To explore if there is any pattern
in the structure of the pruned models, we show the structure of
pruned models on task A→W and I→P in Fig. 6 with TCP. As
we can see, higher layers have more redundancy than lower
layers in VGG16-based models, and our TCP prefer pruning
the higher layers. This is reasonable for UDA because the
lower layers usually encode common and important features
for both source and target domains. Moreover, because there
are more parameters in higher layers of CNN, especially the
first fully-connected layer in VGG16, our TCP thus can prune
more parameters under almost the same compression rate. The
same result can be observed on ResNet50-based models.



V. CONCLUSION AND FUTURE WORK

In this paper, we propose a unified Transfer Channel
Pruning (TCP) approach for accelerating deep unsupervised
domain adaptation models. TCP is capable of compressing the
deep UDA model by pruning less important channels while
simultaneously learning transferable features by reducing the
cross-domain distribution divergence. Therefore, it reduces
the impact of negative transfer and maintains competitive
performance on the target task. TCP is a generic, accurate, and
efficient compression method that can be easily implemented
by most deep learning libraries. Experiments on two public
benchmark datasets demonstrate the significant superiority of
our TCP method over other methods.

In the future, we plan to extend TCP in pruning adversarial
networks and apply it to heterogeneous UDA problems.
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